未熟児に対する“TOUCHING”的影響

土取 洋子

要旨 本研究は、一貫した Touching を継続して実施することが未熟児の成長発達を促進するかという問題を検討した。研究方法は、入院してくる未熟児を実験群とコントロール群に交互に無作為に割り付けた。研究対象は50例（実験群24例、コントロール群26例）で、在胎数12週。36週14日、体重平均1595.8±447.2 gの低出生体重児であった。未熟児の成長発達の過程は観察した行動を内容分析的に分類し、ブラザッツン新生児行動評価で発達検査を行った。設定した8つの成長発達評価項目の中でブラザッツンスコア・ブラザッツン行動発達評価検査日の胎齢・退院日の早期化の3項目に有意に Touching の効果がみられた。研究結果より、看護者が一貫して Touching をすることは未熟児の成長発達を促進することが検証された。

キーワード：Touching、発達、相互作用、ブラザッツン新生児行動評価

I. はじめに

近年、周産期における母子の早期接触が母性や新生児の発達に重要であることが一般化されつつある。Neonatal Intensive Care Unit（以下 NICU とする）に収容された未熟児は、医療処置や特殊ケアのため早期の母子との接触体験が剥奪されることになる。そのことは母子関係に短期的・長期的影響を及ぼすと言われている1,2）。母子関係の研究、精神分野の創始者 Freud に始まり、Bowlby のアタッチメント理論から母子相互作用の重要性を論じる立場で研究されてきた3,4,5）。『きずな（Bonding）』という概念の臨床的意義をふまえて、早期の母子接触を積極的に推奨ののが Klaus と Kennel であり、その後、親子関係を母親を中心に考える研究から、子ども発達に視点が移りつつある。マタナルケアの剥奪について Ainsworth は、母親剥奪を子どもと母親の間の相互作用の不正と定義した7）。一方、人間の新生児に対する触覚刺激の重要性は、身体的・精神的発達を可能に学習の先行条件として論じられている8,9,10）。未熟児に対する刺激の有効性について数多くの刺激様式（身体メッセージとロッキングの複合）・前庭刺激・聴覚刺激そして触覚刺激が、児の発育に良い影響があると言われているが11,12,13,14,15）。わが国で、未熟児の出生から分娩予定日付後30日目の長期に及ぶ看護介入についての報告は少ない。未熟児看護の目標は、未熟児に対しては生命を最大限に発揮させ成長発達を促進し、母子を1つの unity としてセルフケアの実現を可能にすることがある。本研究に用いた概念モデルは、Mayerroff の提倡するケアの本質16）を看護の哲学的根拠として、未熟児の成長発達について Gesell の成熟説17）に学び、「行動の体」による成熟の過程を観察しながら Touching した。一方母親の心理社会的ストレスに対する適応過程は、Erikson の発達理論18）をもとに、母親との相互作用過程を深めるため、子どもの生命の安全や成長のきざしを伝え精神的に援助した19）。対象のニード・主体性を尊重したケアの説明のために Maslow のニード論20）を用いた。

本稿は研究の一部 Touching と未熟児の成長発達の関連性についてまとめた。

II. 研究方法

A. Pilot Studies

1. 未熟児の観察能力を高める

Gesell の成熟評価表を用いて未熟児の生態に接近することと、限界について確認するために行った。
観察は、処置やケアを妨害することがないように配慮して、保育室の近くで児の反応をよく見える場所で行った。約4時間継続して6回のクールで3人の未熟児の行動観察を、最小時間10秒から最大時間2分間隔で観察記述した。

2. Gesell の成熟評価法

退院をひかえ、状態の安定した未熟児に対して成熟度を観察した。Gesell の成長発達評価に従って、測定用具（赤い輪、ベル、ライトなど）を用いて評価した。観察は授乳や清潔のための時間を避けながら静的な自然状態で行うが、可能な範囲で検査に必要な姿勢をとらせて実施した。

その結果、胎児37週の未熟児にもすでに環境との相互作用が始まっていることが明らかになり、その発達を評価するためにプラゼルトン新児行動評価（NBAS）を併用することにした。

B. 人権の保護

家族へのインフォームド・コンセントを実施施設に申し入れたが、当該施設では管理運営上、医学・看護研究に関する同意書を得ることができ認められず、治療・処置・看護ケアに関する承諾書により、家族には研究者が自己紹介して実施した。対象児のデータは、公表する際は匿名にするということで、病棟管理者の許可を得て、診療記録・看護記録から情報をつけ集めた。

C. 準実験の実施

1. 研究の設定

研究は新生児救急医療を行う、公立の児童専門病院や行われた。Touching は1988年4月から12月にこのフライルで5年間の経験がある研究者が、実験群の未熟児に対してルチンケアに付加的に実施した。

2. 方法

入院時は産科との情報交換を密に行い、新生児科医により速やかに呼吸循環及び体格管理が行われ、適切な酸素・栄養が供給された。全身状態が落ち着いた時点で医師は Dubowitz scale による神経学的評価を行い、産科からの情報を確認した。研究者と医師の診断に従い在胎周数、出生時体重、酸素供給量などの条件のもとで実験を行った。実験群とコントロール群を入院順次に、表1の分類に従って両群に無作為に割り付けた。

1）対 象

a. 対象の選択

(1)出生体重2500 g 未満の低出生体重児。
(2)胎児期4週から40週。
(3)人工呼吸管理が必要な場合は抜管後からとした。
(4)生後24時間は観察期間として、それ以後児の状態が推計に実施した。
(5)使用酸素濃度40％以下で、安定した呼吸状態が保てる。

b. 対象除外基準（次の項目に該当する未熟児は、本実験の対象から除外した）

(1)多発奇形。
(2)先天性疾患、敗血症、および（呼吸困難症候群は除く）出産当初からの呼吸循環器疾患。
(3)中枢神経合併症：脳室内出血（上衣下出血は除く）、明かなし性脳発症等。
(4)間質性肺気腫（GradeⅡ以上）、気胸、気腫隔。
(5)その他特別の事情により本実験に不適当と判断した未熟児。

2）TOUCHING の実施時間とやり方

(1)研究者は毎日のカンファレンスで情報収集を行い、児の状態を熟知していた。未熟児の行動観察を充実させ、約5分間に実験群に対してTouching を午前と午後の一定時間（6：00, 12：00, 15：00, 17：00）4回/日行った。Touchingは、一定の方法（表2）で入院後児の状態が安定してから退院日まで毎日継続して実施した。

(2)午後の時間は、2時間から4時間までの休憩時間の中で行い、母親の初回に研究者の未熟児に対する Touching を見て、母親の気持ちを考慮した上で母親自身に Touching の機会を与えた。その時研究者が観察した児の行動発達のきざしを伝えた。

3）発達検査の実施

原則として、1回/各成発段階（Ⅰ：28-32週Ⅱ：33-36週Ⅲ：37-42週）とした。発達を評価する尺度としては A.Gesell の成長発達診断評価表と、T.B.Brazelton の NBAS を用いた。特に、後の行動評価は胎児37週以後の未熟児に対して退院を控えた数日前か当日に行ない検査をし、その最も良い状態を選んだ。
III. 結 果

本研究の対象となった未熟児は、在胎週数は24.6
-38.9週、31.7±3.7週、出生時体重は690.0-2450.0
g平均1595.8±447.2 gの低出生体重児であった。
標本数は対象群24例、コントロール群26例であった。
両群で、対象の特性 [在胎週数・出生時体重・アブ
ガースコア (1分後) (5分後)] と両親の年齢の平
均値に有意差はなかった。対象児の詳細については、
表3、4に示した。
1. Gesell の成長発達評価表を用いた観察結果（表
5 参照）

（28-32週） II（33-36週） III（37-42週）の 3
期に分け測定を行った結果それぞれの期間で32週、
36週、40週前後数日にデータを収集することができ
た。I期では、この期間に在院していた対象児が少
なかった上に入院後もみないため、状態が不安定で
測定できたのは数例のみであった。また期にについ
てはコット移行後の方が多く、Gesell 評価表に
表示される現象に限界があったが、NBASをこの時
期に実施して、比較的多くの対象からデータが得ら
れたので、ここではII期の結果を報告する。呼吸管
理、輸液管理中であるためデータ収集できたのは実
験群が20例、コントロール群は14例であった。これ
によって 1. 自発的抑圧位にはあまり差はない。2.
視覚の注意では、赤い輪に対して反射的な反応が
みられる場合が実験群より多く観察された。4.
ベルの音に対しても反射的な動きをコントロール群
に有意だったが、静かになるというような行動は実
験群に多くみられた。7. 検査者が顔をみつめると、
視覚的要素のある受容的なまなざしをみせるのは実
験群に多かった。8. 頭の定位は、この時期に検
査可能な対象児はすでにコット移行していることが前
提となるの声で箱収得が良いと言えるが、実験
群の方が頭部の筋緊張が良く保たれていた。このこと
については 10. 筋緊張が弛緩性の強弱のところからも
わかる。9. 自発的腹位のところでは顔をしっかり
あげたり、弓なりに曲げたりするのはコントロール
群の方がよく発達していた。11. 眠りと覚醒では24
時間継続観察が必要であるため自然な睡眠と覚醒の
パターンは観察されなかった。未熟児の行動観察で
は胎児32週から33週の未熟児にまでは入っている時に
自発的微笑がみられた。また36週前後の未熟児で

Touching によって微笑が誘発されたり、聴覚刺激
に注意を向けたり、注視することがわかった。有効
標本数は少なかったがこれらの刺激によって出現し
た反応には有為差があった。

2. プラゼルトン新生児行動評価（NBAS）結果（表
6 参照）

NBASの6つの項目（異常な神経学的反射は除く）
に関する結果は表6-1,2）に示す通りであった。
特に未熟児に対する項目に有意差があったが、表6
-3）に示した成熟生児に対する先行研究の報告27）
と示し、本研究の対象数が少なかったため、本
稿においては結果の報告のみにとどめ、今後さらに
多くの対象について検査結果を蓄積し分析していき
たいと考えている。

3. 成長発達の評価項目による分析結果（表7 参照）

成長発達を比較するために評価項目として8変数
に関する統計分析を行った。

今回用いた評価項目の中で、退院時と分娩予定日と
の差・プラゼルトン投与・プラゼルトン新生児行動発
達評価検査（原則として退院当日の胎児の検査）の3
項目に有意に Touching の効果がみられた。まず退
院予定日と分娩予定日との差について、分娩予定日を
0として、退院がその日よりおきすぎれば（-）、予
定日より早く退院できれば（+）として数量化した。
有効標本数48例（実験群23例、コントロール群25例）
について、実験群8.5日、コントロール群8.0日であ
った。いずれも分娩予定日より早く退院しているが
実験群の方が約8日早かった（p<0.05）。

第二に、プラゼルトン新生児行動発達評価は、原則とし
て退院当日の早朝6時頃に行った。検査施行例47例
の平均スコアは204.5点、実験群では212.7点、コ
ントロール群は198.5点で、実験群の方が約14点高か
った（p<0.05）。

第三にプラゼルトンの行動評価検査日の胎児につい
て、有効標本数47例について、検査当時の胎児の
平均は39.3週であった。実験群23例については、
38.8週で、コントロール群24例は39.8週であった。
実験群の対象児はコントロール群に比べて約1週間
早く退院した。

4. 未熟児の成熟に影響する主な要因（表8 参照）

統計学的分析の中で NBAS の結果を基準変数、
呼吸管理の有無と Touching 介入の有無を説明変
数として二元配置分散分析を行った。有効標本数
は47例であった。実験群の中で呼吸管理をしたのは6例であり、ブレセルトスコープの平均値は206.5、呼吸管理をしなかったのは17例で214.9、コントロール群で呼吸管理をしたのは12例で197.9、呼吸管理をしなかったものも12例で199.0であった。交互作用は有意でなく、主効果は Touching についてのみ有意差がみとめられた（p < 0.05）。

N. 考察

観察結果によると「赤い輪に対する視覚の注意」 「検者が顔をみつめるとき視覚的要素のある受容的なまなざしをみせる」などの発達のきざしそ実験群に出現率が高かった。これは探索行動の起源であり、知覚運動機能である注視の発達についての事実を示している33)。注視とは暖昧さを残す用語で、いつ頃出現し始めるのか、どのような視機能であるかは、報告者それぞれの用語の定義に委ねられている。わが国においては小嶋が「注視(visual attention)とは、乳児の目が半球以上見開かれ凝視の方向が30秒以内に変化する(shifting)」と定義している34)

Gesell は「行動の発生学」の中で、(a)初期 (28-32週)，(b)中期 (32-36週)，(c)成熟期 (36-40週)のそれぞれの時期における視行動の成長の過程を細かく観察しているが、今回の成熟度評価では彼が中期にみだした次のような行動の出現を測定した。「胎児乳児は、赤色の10cmのつりさげた輪を視野を横切ってゆっくり動くのを見て幼い反応をする。彼はそれを観察するように見ることなく、それに視線を注ぐことさえもしない。しかし、両眼はいれん性に短時間それを追って動く。これは、視覚の最も早期の機能の一つであり、中間胎児性乳児の特徴である22)」

人間の発達には初期の handling が必要であるということは多くの研究結果から言われているが26, 27, 28)，一貫性のある Touching を受けた実験群はコントロール群よりも注視しやすい傾向があった。Touching を始めた時にまどろみの状態であっても、少し触れられていると開眼しこちらを見注した。また実験群の児の母親から会話中に「見つめられているように感じる」ということを聞くことができた。「しかしこれは、観察者の主観であるため今回の研究においても観察者側の感情を対象に投影してしまう危険性がある。従って実証的なデータを収集するには観察測定の客観性・信頼性を得るためにビデオ収録を試みたり、観察者を複数にして共通点で評価することが望まれる。

次に聴覚刺激に関して「ベルの音に対する反射的な動き」はコントロール群に多くみられたが、「静かになる」というような行動は実験群に有意に多かった。ここでは興味深いことは、聴覚刺激に対して視覚の反応がみられたことである。実験群の行動の中にはベルを鳴らすと微笑反応が出現したり、3回のベルの音には体動は静まり、注意をこちらに向けというような視線の動きを伴うことがあった。これにより、一貫した Touching が音に注意を向けることを利用したものと解される35)、さらにより多くの音刺激を受け、体重増加に良い影響があったと解される35)。文献によると、環境から受けた刺激に反応した乳児が環境に働きかけ、その働きかけによって生じる環境の変化が強化となって、探索反応が増加することも明らかにされてきた。視覚や聴覚が発達するにつれて自分の身体から離れた場所にある物を知覚が可能になり、目が対象に固定するようになるとその対象に近づいて掴み、口に含めていったという身体全体での反応を現すようになる35)。さらに乳児の発声・泣き・微笑といった社会反応も、それに対処するおおとも達の反応によって相互作用過程の中で、知的発達・人格形成へと移行していく。

次に、Touching や発達検査の際にみられた微笑反応は、①外部刺激と無関係に出現した自発的微笑反応と、②音刺激に対する微笑反応、③触れられたことに注視し、その後に出現した微笑反応に分けられが、覚醒状態だけでなく睡眠でも観察された。それぞれ未分化であり出現順位は、高橋・藤田の報告による「第1の段階としては、まず、主として自発的微笑反応のみが生じる段階を認める。第2段階として、触・聴覚刺激によって微笑反応が生じる時期である。第2の段階は、視覚刺激によって微笑反応が生じる時期、第4の段階は特定の見慣れたものへの微笑反応が選択的に生じ、社会的微笑反応とされる時期である36)。」と同様であった。出現した時期は Touching をした早産児の中には外的刺激によって微笑反応が非常に早い例があった。高橋・藤田は「睡眠・微笑反応・その他の愛着行動に関する研究」の中で、「微笑反応の開始＝消失には一定の型が存在する。家庭児では、静止した額に対する微笑反応の開始は生後6-7週頃である。施設児ではそ
の発生は11-14週、ピークは17-20週で、家庭児より遅れる31。また他方で「早産児は外的刺激による微笑反応の出現に長時間要する」という事実が報告されている。ここで問題にあるのは、早産児であるから微笑反応の出現に長時間かかるのか、あるいは施設に収容されていることが問題なのかという点である。今回の研究結果から必ずしも早産児であることが決定因子であるとは言えないことがわかった。早産児は、本来なら母胎内で保護されているはずの早期より社会化を受けることになり、母胎外での社会的・情動的環境が成熟児以上に重要であることは言うまでもない。そしてその大切な時間に基本的な欲求を満たしてくれるのが看護師である。

本研究にみられた傾向は、未熟児は日齢36週前後からすでに環境と相互作用していることが行動観察できた。繰り返し出現してくれる微笑は自発的微笑から刺激に反応する微笑になり、触覚・聴覚・視覚刺激を受けながら意識の覚醒、対象関係へと発達していく過程があるように見えた。一般的に対象関係32の始まりは早くとも30週で、母親との間に成立するとわれた。しかし早産児の場合は前述のGesell成熟評価による観察結果から、37週未満の対象児は探索行動の起源である触覚・視覚・聴覚などの感覚知覚刺激を出生直後より環境から受けている。行動は内在的な成熟の具現化されたものであり、準備状態を経て37週頃から対象関係が成り立ち始めると考えられる。

今回のNBASでは方位反応、運動能力、状態の調整において実験群の発達が良かったが、わが国では未熟児についての報告は非常に少ない。未熟児に対する項目についてプラザテストは、補足的項目として最近未熟児やリスクのある対象に行われ始めたばかりで、どのように解釈するかは今後の課題であると言っている33。そのためにはもっと多くの未熟児に検査を行い、クラスター分析を試みることも必要である。NBASの検査により、かつては個性の乏しい幼弱な存在として語られた未熟児が出生直後より環境との相互作用により、個性的な成熟をとげていることが明らかになった。ボールやガラガラのような物体より、検査者や母親の顔をより確かに追うという検査結果からも、NICUで接する看護者のケアの質がより強い刺激となり34、35。治療技術とともにその後の子どもの生活過程に影響すると考えられる36。

観察者や発達検査を通して、子どもと養育者との相互作用が成長発達を助長していくと考えられたが、退院については子ども成熟が優先され、母親や家族の準備性を把握することをも含みかかった。Touchingの影響で退院が進まったことは、早期に母親に養育されるという点で評価できる。理想的には母親のニーズに応じて母親自身の健康回復に有効な援助ができること、サポートできる人は誰か相談にのること、そしてまた家族に帰った後のケアの継続を地域の保健婦に委託することなどが子供に対する看護者の役割である。ハリウッド妊娠・分娩（未熟児出産）を経験した母親の場合、退院するまでに小さく幼弱な児が生じるかもしれないもであり、産褥期も続くストレスを罪悪感や苦痛とともに耐えなければならない。しかし、小さな命に触れその発達のきざしに気づき、自分の子どもとして受容する過程の中で、正常分娩した母親と同様に、それを以上の満足感を得る可能性をもっている。今後母子の相互作用過程を通じて母親や父親そして家族の発達にも注目した変化の過程について研究を発展させていきたいと考えている。最後に、看護師への示唆として、

１．未熟児に対して日常の授乳・沐浴・オムツ交換などのケアにTouchingを生かすことの成長発達を促進する。

２．看護者は母親（両親）が子どもに触れることによって、その個性に気づき、具体的な育児の方法を学ぶことができるよう情緒的・認知的に支援する。そのための方法にNBASを活用することも有効と考える。

V．結論

未熟児看護における知識と技術をもつ看護者が、未熟児に継続して一貫したTouchingをするとは入院から退院までの未熟児の成長発達を促進する。
表1 ブロック因子を制御した入院児の分類表

<table>
<thead>
<tr>
<th>病状</th>
<th>SFD</th>
<th>AFD</th>
<th>LFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>なし</td>
<td>(A)</td>
<td>(B)</td>
<td>(C)</td>
</tr>
<tr>
<td>あり</td>
<td>(D)</td>
<td>(E)</td>
<td>(F)</td>
</tr>
</tbody>
</table>

左の表を実験群とコントロール群別に、入院児を6つのセルの分類に従って、実験群とコントロール群に交互に割り付けた。
SFD (small-for-dates infant) AFD (appropriate-for-dates infant) LFD (large-for-dates infant)

表2 TOUCHINGの方法

1. 皮膚接触面の広さと、その強さ
 1) 28~32週：左右の第2指、第3指を使って皮膚面に水平に1秒咲きに1回ずつ7~8回往復するように動かす。圧力はほとんどない。
 2) 33~36週：手の掌全体を皮膚面に接触するようにして、1秒毎に1回ずつ7~8回往復するように動かす。圧力はその時の状態によりマッサージする程度までかけてよい。
 3) 37~42週：コット移動している場合は衣服を着ているので露出できる部位に2)同様のマッサージを行う。覚醒している時は動かしてやる。

2. なでる、ささる、その方向性
 1) 頭から右へ、
 2) 腕から、左右の肩へ、
 3) 上肢部から鎖まで、
 4) 全身のいすから下肢へ、
 5) 両腕の肩から鎖まで、
 6) 両手の手をささしく握る。

表3-1 対象の特性

<table>
<thead>
<tr>
<th></th>
<th>実験群 (n=24)</th>
<th>コントロール群 (n=26)</th>
</tr>
</thead>
<tbody>
<tr>
<td>産児数 (%)</td>
<td>14 (28.0)</td>
<td>9 (18.0)</td>
</tr>
<tr>
<td></td>
<td>10 (20.0)</td>
<td>17 (34.0)</td>
</tr>
<tr>
<td>在胎週数 (週)</td>
<td>31.7 ± 3.6</td>
<td>31.7 ± 3.7 (24.6 - 38.9)</td>
</tr>
<tr>
<td></td>
<td>31.7 ± 3.7</td>
<td>(24.6 - 38.1)</td>
</tr>
<tr>
<td>出生時体重 (g)</td>
<td>1620.2 ± 456.1 (690.0 - 2450.0)</td>
<td>1573.3 ± 437.7 (740.0 - 2435.0)</td>
</tr>
<tr>
<td>アプロガースコア (1分後)</td>
<td>7.4 ± 2.1 (1 - 10)</td>
<td>6.5 ± 2.7 (1 - 10)</td>
</tr>
<tr>
<td>アプロガースコア (5分後)</td>
<td>9.0 ± 1.5 (4 - 10)</td>
<td>8.6 ± 1.4 (5 - 10)</td>
</tr>
<tr>
<td>父親の年齢 (歳)</td>
<td>33.2 ± 4.2 (25 - 42)</td>
<td>32.3 ± 4.6 (26 - 44)</td>
</tr>
<tr>
<td>母親の年齢 (歳)</td>
<td>31.3 ± 4.8 (21 - 42)</td>
<td>29.8 ± 4.3 (19 - 39)</td>
</tr>
</tbody>
</table>

(NS)

表3-2 在胎週数による分類

<table>
<thead>
<tr>
<th></th>
<th>実験群 (%)</th>
<th>コントロール (%)</th>
<th>全例 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>27w</td>
<td>3 (6)</td>
<td>3 (6)</td>
<td>6 (12)</td>
</tr>
<tr>
<td>28~31w</td>
<td>9 (18)</td>
<td>11 (22)</td>
<td>20 (40)</td>
</tr>
<tr>
<td>32~35w</td>
<td>9 (18)</td>
<td>6 (12)</td>
<td>15 (30)</td>
</tr>
<tr>
<td>36~39w</td>
<td>3 (6)</td>
<td>6 (12)</td>
<td>9 (18)</td>
</tr>
<tr>
<td>40w~</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>合計</td>
<td>24 (48.0)</td>
<td>26 (52.0)</td>
<td>50 (100.0)</td>
</tr>
</tbody>
</table>

(NS)

表3-3 体重による分類

<table>
<thead>
<tr>
<th></th>
<th>実験群 (%)</th>
<th>コントロール (%)</th>
<th>全例 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500~999g</td>
<td>2 (4.0)</td>
<td>3 (6.0)</td>
<td>5 (10.0)</td>
</tr>
<tr>
<td>1000~1,499g</td>
<td>9 (18.0)</td>
<td>10 (20.0)</td>
<td>19 (38.0)</td>
</tr>
<tr>
<td>1500~1,999g</td>
<td>7 (14.0)</td>
<td>10 (20.0)</td>
<td>17 (34.0)</td>
</tr>
<tr>
<td>2000~2,499g</td>
<td>6 (12.0)</td>
<td>3 (6.0)</td>
<td>9 (18.0)</td>
</tr>
<tr>
<td>合計</td>
<td>24 (48.0)</td>
<td>26 (52.0)</td>
<td>50 (100.0)</td>
</tr>
</tbody>
</table>

(NS)

表4 対象児の臨床特徴

<table>
<thead>
<tr>
<th></th>
<th>実験群 (%)</th>
<th>コントロール (%)</th>
<th>全例 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>産児数 (%)</td>
<td>8 (4.0)</td>
<td>6 (3.0)</td>
<td>14 (7.0)</td>
</tr>
<tr>
<td>名称</td>
<td>24w 4d</td>
<td>38w 2d</td>
<td>120w 4d</td>
</tr>
<tr>
<td>生理体重 (g)</td>
<td>690g</td>
<td>800g</td>
<td>800g</td>
</tr>
<tr>
<td>INB</td>
<td>ELBW, RDSB, 高K血症, CLD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INB</td>
<td>ELBW, RDSB, 胎児性, CLD, 腹部外傷, 未熟児貧血, 未熟児髄液, G2R, 腸管性髄液低出発, 構造異常</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3%</td>
<td>3d 160g</td>
<td>2100g</td>
<td>2100g</td>
</tr>
<tr>
<td>4.3%</td>
<td>3d 160g</td>
<td>2100g</td>
<td>2100g</td>
</tr>
<tr>
<td>5.2%</td>
<td>38w 2d</td>
<td>1200g</td>
<td>1200g</td>
</tr>
<tr>
<td>6.7%</td>
<td>2b 2d</td>
<td>1200g</td>
<td>1200g</td>
</tr>
<tr>
<td>7.3%</td>
<td>38w 2d</td>
<td>1200g</td>
<td>1200g</td>
</tr>
<tr>
<td>9.4%</td>
<td>2b 2d</td>
<td>1200g</td>
<td>1200g</td>
</tr>
<tr>
<td>10.1%</td>
<td>3d 4d</td>
<td>2100g</td>
<td>2100g</td>
</tr>
<tr>
<td>11.4%</td>
<td>2b 2d</td>
<td>1400g</td>
<td>1400g</td>
</tr>
<tr>
<td>12.5%</td>
<td>2b 2d</td>
<td>1400g</td>
<td>1400g</td>
</tr>
<tr>
<td>13.6%</td>
<td>38w 3d</td>
<td>1700g</td>
<td>1700g</td>
</tr>
<tr>
<td>15.7%</td>
<td>3d 1d</td>
<td>1500g</td>
<td>1500g</td>
</tr>
<tr>
<td>16.9%</td>
<td>3d 1d</td>
<td>1500g</td>
<td>1500g</td>
</tr>
</tbody>
</table>

(NS)
表4 対象児の臨床特徴

<table>
<thead>
<tr>
<th>患者</th>
<th>特別</th>
<th>頻度</th>
<th>出生時体重</th>
<th>主な臨床症状</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. T.M.</td>
<td>36w 4d</td>
<td>2450g</td>
<td>LBW</td>
<td></td>
</tr>
<tr>
<td>18. M.E.</td>
<td>32w 0d</td>
<td>1180g</td>
<td>VLBW(SFD:1.8SD)</td>
<td></td>
</tr>
<tr>
<td>19. O.M.</td>
<td>32w 0d</td>
<td>1810g</td>
<td>LBW, TTN</td>
<td></td>
</tr>
<tr>
<td>20. W.J.</td>
<td>34w 1d</td>
<td>2070g</td>
<td>LBW</td>
<td></td>
</tr>
<tr>
<td>21. H.M.</td>
<td>34w 2d</td>
<td>1950g</td>
<td>LBW, 高ビリルビン血症</td>
<td></td>
</tr>
<tr>
<td>22. T.N.</td>
<td>33w 1d</td>
<td>2400g</td>
<td>LBW</td>
<td></td>
</tr>
<tr>
<td>23. Y.A.</td>
<td>31w 0d</td>
<td>1670g</td>
<td>LBW, テトナル</td>
<td></td>
</tr>
<tr>
<td>24. R.J.</td>
<td>31w 2d</td>
<td>1730g</td>
<td>LBW, TTN</td>
<td></td>
</tr>
</tbody>
</table>

表5-1) Gesell成長発達評価結果

<table>
<thead>
<tr>
<th>発達検査</th>
<th>観察された行動</th>
<th>実験群</th>
<th>コントロール</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 自発的</td>
<td>①顔が主に左右を動く。</td>
<td>8 (40.0)</td>
<td>4 (28.6)</td>
</tr>
<tr>
<td></td>
<td>②小さく頭を動かす。</td>
<td>4 (20.0)</td>
<td>1 (7.1)</td>
</tr>
<tr>
<td></td>
<td>③顔を30°前後に動かす。</td>
<td>18 (90.0)</td>
<td>13 (72.9)</td>
</tr>
<tr>
<td></td>
<td>⑤小さな頭の動きがみられる。</td>
<td>9 (45.0)</td>
<td>5 (28.5)</td>
</tr>
<tr>
<td>2. 調節</td>
<td>④口を開ける。</td>
<td>6 (30.0)</td>
<td>13 (72.9)</td>
</tr>
<tr>
<td></td>
<td>⑥舌を出す。</td>
<td>17 (85.0)</td>
<td>12 (65.7)</td>
</tr>
<tr>
<td>2. 知覚の分化</td>
<td>⑦眼を開ける。</td>
<td>20 (100.0)</td>
<td>14 (70.0)</td>
</tr>
<tr>
<td></td>
<td>⑧若の固定。</td>
<td>15 (75.0)</td>
<td>13 (72.9)</td>
</tr>
<tr>
<td></td>
<td>⑨小さな頭の動きがみられる。</td>
<td>13 (65.0)</td>
<td>12 (65.7)</td>
</tr>
<tr>
<td>2. 言語</td>
<td>⑩a声を発する。</td>
<td>18 (90.0)</td>
<td>11 (76.6)</td>
</tr>
<tr>
<td></td>
<td>⑪語音の発音。</td>
<td>9 (45.0)</td>
<td>11 (76.6)</td>
</tr>
<tr>
<td>3. 視覚</td>
<td>⑫能を発音。</td>
<td>12 (60.0)</td>
<td>5 (28.5)</td>
</tr>
<tr>
<td></td>
<td>⑬能を発音。</td>
<td>11 (55.0)</td>
<td>6 (42.9)</td>
</tr>
<tr>
<td></td>
<td>⑭要は言語の発音。</td>
<td>19 (95.0)</td>
<td>14 (70.0)</td>
</tr>
<tr>
<td>3. 口腔</td>
<td>⑱手をよく動かす。</td>
<td>20 (100.0)</td>
<td>14 (70.0)</td>
</tr>
<tr>
<td></td>
<td>⑲好を伸ばす。</td>
<td>20 (100.0)</td>
<td>14 (70.0)</td>
</tr>
<tr>
<td></td>
<td>⑳手を閉じる。</td>
<td>20 (100.0)</td>
<td>14 (70.0)</td>
</tr>
<tr>
<td></td>
<td>㉑ビーガー・ビーグー声を出して遊ぶ。</td>
<td>14 (70.0)</td>
<td>7 (50.0)</td>
</tr>
</tbody>
</table>

2. 視覚の注意の改善

1) 無条件反射
- ①反射なし。 | 9 (45.0) | 11 (78.6) |
- ②反射を Babaの動きがみられる。 | 9 (45.0) | 11 (78.6) |
- ③反射を Babaの動きがみられる。 | 9 (45.0) | 11 (78.6) |

2) フラッシュ
- ①顔を動かす。 | 18 (90.0) | 14 (70.0) |
- ②反射を観察される。 | 16 (80.0) | 12 (65.7) |
- ③反射を観察される。 | 7 (35.0) | 7 (35.0) |
- ④反射を観察される。 | 8 (40.0) | 8 (40.0) |
- ⑤反射を観察される。 | 7 (35.0) | 8 (40.0) |

3. 手でつかむ

1) 物
- ①手でつかむ。 | 18 (90.0) | 14 (70.0) |
- ②手でつかむ。 | 18 (90.0) | 14 (70.0) |

4. 動的観察

- ①反射を観察される。 | 10 (50.0) | 5 (28.5) |
- ②手でつかむ。 | 12 (60.0) | 6 (42.9) |
- ③反射を観察される。 | 11 (55.0) | 9 (50.0) |
- ④反射を観察される。 | 14 (70.0) | 4 (28.6) |

LBW: Low Birth Weight infant, **VLBW**: Very Low Birth Weight infant, **ELBW**: Extremely Low Birth Weight infant, **CLD**: Congenital Lungs Disease, **TTN**: Transient Tachypnea of Newborn, **SFD**: Small For Dates infant, **AIP**: Alkaline Phosphatase, **ケース42, 44**: 観察対象者。

（備考）未熟児網膜症の早期発見のため、ほぼ全例が眼科検診を受診しているが、ケース42, 44は対象外です。
表5-2 Gesell 成長発達評価（実験群とコントロール群の行動の出現頻度）

<table>
<thead>
<tr>
<th>項 頭</th>
<th>発達検査番号</th>
<th>有</th>
<th>実験群</th>
<th>カイ2否定</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-10</td>
<td>+</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.832</td>
<td>2.571</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.050</td>
<td>0.109</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(上欄)</td>
<td>(下欄)</td>
</tr>
<tr>
<td></td>
<td>2-15</td>
<td>+</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.663</td>
<td>2.370</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.038</td>
<td>0.124</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(下欄)</td>
<td>(下欄)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.045</td>
<td>0.035 *</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(上欄)</td>
<td>(上欄)</td>
</tr>
<tr>
<td></td>
<td>4-10</td>
<td>+</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.247</td>
<td>3.751</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.022</td>
<td>0.053</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(下欄)</td>
<td>(下欄)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.009</td>
<td>0.009 *</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(上欄)</td>
<td>(上欄)</td>
</tr>
<tr>
<td></td>
<td>7-10</td>
<td>+</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.346</td>
<td>3.441</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.017</td>
<td>0.042</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(下欄)</td>
<td>(下欄)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.008</td>
<td>0.163</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(下欄)</td>
<td>(下欄)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.063</td>
<td>0.032</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(下欄)</td>
<td>(下欄)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.028</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(上欄)</td>
<td>(上欄)</td>
</tr>
<tr>
<td></td>
<td>10-10</td>
<td>+</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.400</td>
<td>3.169</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.032</td>
<td>0.075</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(下欄)</td>
<td>(下欄)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.015</td>
<td>0.035</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(上欄)</td>
<td>(上欄)</td>
</tr>
</tbody>
</table>

データ収集をした実験群20群、コントロール群14群のうち検査項目により有効数はさらに限定された。

(* p < 0.05)
表6-1 プラゼルトンスコア6群の平均値の比較
(平均値±不偏標準偏差)

<table>
<thead>
<tr>
<th></th>
<th>全例(n=47)</th>
<th>実験群(n=25)</th>
<th>コントロール群(n=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>強さの現象</td>
<td>6.11±1.103</td>
<td>6.15±1.156</td>
<td>6.07±1.043</td>
</tr>
<tr>
<td>方位反応</td>
<td>5.51±0.807</td>
<td>5.77±0.745</td>
<td>5.25±0.786</td>
</tr>
<tr>
<td>運動能力</td>
<td>5.58±0.845</td>
<td>5.73±0.836</td>
<td>5.42±0.826</td>
</tr>
<tr>
<td>状態の変化性</td>
<td>3.25±0.600</td>
<td>3.27±0.430</td>
<td>3.23±0.736</td>
</tr>
<tr>
<td>状態の調整能力</td>
<td>5.18±0.907</td>
<td>5.45±0.824</td>
<td>4.91±0.967</td>
</tr>
<tr>
<td>自律調整能力</td>
<td>4.16±0.898</td>
<td>4.10±0.885</td>
<td>4.23±0.907</td>
</tr>
</tbody>
</table>

(N.S)

表6-2 微笑みと補足項目プラゼルトンスコアの比較
(平均値±不偏標準偏差)

<table>
<thead>
<tr>
<th></th>
<th>全例(n=47)</th>
<th>実験群(n=25)</th>
<th>コントロール群(n=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>微笑み</td>
<td>1.57±0.625</td>
<td>1.78±0.858</td>
<td>1.37±0.577</td>
</tr>
<tr>
<td>未熟児のための通目</td>
<td>54.44±6.636</td>
<td>56.43±6.381</td>
<td>52.54±6.433*</td>
</tr>
</tbody>
</table>

(※p<0.05)

表6-3 生後3日、10日、30日のClustering Scores

<table>
<thead>
<tr>
<th>分類項目</th>
<th>日時</th>
<th>3日</th>
<th>10日</th>
<th>30日</th>
</tr>
</thead>
<tbody>
<tr>
<td>動きの現象</td>
<td>5.5±1.04</td>
<td>5.34±1.06</td>
<td>5.63±1.47</td>
<td>5.3±1.04</td>
</tr>
<tr>
<td>方位反応</td>
<td>6.94±1.10</td>
<td>7.04±1.02</td>
<td>7.24±0.83</td>
<td>6.94±1.10</td>
</tr>
<tr>
<td>運動能力</td>
<td>5.57±0.60</td>
<td>5.75±0.44</td>
<td>5.99±0.39</td>
<td>5.57±0.60</td>
</tr>
<tr>
<td>状態の変化性</td>
<td>4.22±0.49</td>
<td>4.5±0.96</td>
<td>3.74±0.87</td>
<td>4.22±0.49</td>
</tr>
<tr>
<td>状態の調節能力</td>
<td>5.86±1.20</td>
<td>5.85±1.32</td>
<td>5.68±1.06</td>
<td>5.86±1.20</td>
</tr>
<tr>
<td>自律調整能力</td>
<td>6.59±1.12</td>
<td>6.34±1.19</td>
<td>6.46±0.93</td>
<td>6.59±1.12</td>
</tr>
</tbody>
</table>

(加藤忠明他:新生児・乳児の発育・発達に関する日本比較研究(第2報)より、一部抜粋)

表7 TOUCHINGの有無と成長発達評価項目

<table>
<thead>
<tr>
<th></th>
<th>実験群(n)</th>
<th>コントロール群(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>生下時体重への復帰日</td>
<td>19.0(24)</td>
<td>17.9(25)</td>
</tr>
<tr>
<td>経口開始時栄養摂取量/日(kg/day)</td>
<td>16.4(23)</td>
<td>15.9(26)</td>
</tr>
<tr>
<td>コット移行時日齢</td>
<td>34.6(23)</td>
<td>40.0(26)</td>
</tr>
<tr>
<td>退院時日齢</td>
<td>47.6(23)</td>
<td>55.6(25)</td>
</tr>
<tr>
<td>退院日と分娩予定日との差（退院の早期化）</td>
<td>8.5(23)</td>
<td>0.3(25)*</td>
</tr>
<tr>
<td>退院時体重（kg）</td>
<td>2589.0(23)</td>
<td>2645.7(25)</td>
</tr>
<tr>
<td>プラゼルトンスコア</td>
<td>212.7(23)</td>
<td>198.5(24)*</td>
</tr>
<tr>
<td>検査日の胎齢（原則とし退院日）</td>
<td>38.8(23)</td>
<td>39.8(24)*</td>
</tr>
</tbody>
</table>

(※p<0.05)

文献
31. 藤田統栄（1977）基礎と臨床の心理学1，初期経験と早期行動．誠信書房，60-77；248-265.
32. R.A.Spitz（1956）古賀行義（1985）前掲書3): 30-34.
Premature Infants and the Effects of Touching

YOUKO TSUCHITORI

Department of Nursing, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja-shi, Okayama 719-11, Japan

Key words: Touching, Development, Interaction, Brazelton Neonatal Behavioral Assessment Scale