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 Vibrio vulnificus is a gram-negative, comma-shaped bacterium found in warm 

seawater and brackish waters. V. vulnificus occasionally causes primary septicemia, 

gastroenteritis, and wound infections in humans: primary septicemia and gastroenteritis 

can occur after ingesting uncooked seafood contaminated with V. vulnificus (1), whereas 

wound infections are often caused by direct contact of an open wound with seawater 

during marine activities or when processing seafood (2). Characteristics of this infection 

are fever, chills, nausea, septic shock, and the formation of secondary lesions on the 

extremities of patients. Antibiotic treatment improve survival. CDC has announced that 

doxycycline and a third-generation cephalosporin is generally recommended. However 

initiation of antibiotic treatment tend to be delayed because V. vulnificus can multiply 

rapidly during infection and there are no pathognomonic symptom of V. vulnificus 

infection except wound infection. V. vulnificus rarely infects healthy individuals; 

however, immunocompromised patients with underlying illness, such as hepatic 

disorder, diabetes, or immunodeficiency, are susceptible to their infection (3). The 

mortality rates of V. vulnificus infection along with primary septicemia have been 

reported to be higher than 50% (4, 5). 

 V. vulnificus infection have been reported in various area. In Japan, no official 

national system surveys V. vulnificus infections, but 117 deaths were reported during 

1975–2005 (6) and the annual number of V. vulnificus septicemia cases has been 

estimated at more than 200 (7). V. vulnificus infection cases have also frequently been 

reported every year in other areas of asia such as Korea or Taiwan (8, 9). In the U.S., 

between 1988 and 2006, the Center for Disease Control and Prevention received reports 

of more than 900 cases of V. vulnificus infection from the Gulf Coast state (10). In 

Europe, V. vulnificus is known as a fish pathogen, particularly of eels, and V. vulnificus 



3 

 

infection in humans is relatively rare (11). However, due to the global warming, 

increasing number of V. vulnificus infection cases have been concerned because this 

bacterium grows rapidly in warm seawater (12). Compared to other infection in the 

same family such as V. cholerae and V. parahaemolyticus, V. vulnificus infection is a 

rare, but it is also considered that there are unreported cases. Although there is not so 

many incidence, V. vulnificus infection is the notable infection from the point of view of 

food sanitation and public health of our country. Because we have food culture to eat 

raw fish such as sashimi and sushi and V. vulnificus infects from eating raw fish or the 

wound of limbs. 

 Several possible virulence factors have been reported for V. vulnificus infection. 

Cytolytic hemolysin (VvhA) (13), which resembles V. cholerae El Tor hemolysin (14), 

RTX toxin (15), and proteolytic elastases such as VvpE (16) have been suggested to 

play a role in the destruction of the host tissue. A polysaccharide capsule is assumed to 

prevent phagocytosis (17). In addition, V. vulnificus induces apoptosis in macrophages 

(18). Although many virulence factors have been found in this organism, the pathogenic 

mechanisms of V. vulnificus infection remain unknown. 

 To develop the effective cure and the preventive against infection, 

identification of an individual etiologic factors of infection is important. Random 

transposon mutagenesis, one of gene-disruption strategies, has been often used to 

produce insertion mutants. The insertion of transposon leads to inactivate the gene and 

if insertion site of transposon related to pathogenesis or attenuation of the bacteria, it 

expected to obtain to attenuated mutant. Transposon insertion mutants are tested for 

attenuated virulence in vivo or in vitro. Infection is complicate process and many genes 

would be expressed during in vivo growth. In the virulence study of V. vulnificus, few in 
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vivo test have been carried out. In this study, I attempt to use new two methods to 

identify V. vulnificus virulence factors in vivo. 
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 To investigate virulence factors of bacterial pathogens, transposon insertion 

mutagenesis method has been widely used. As described in Chapter 1, when mutant 

libaries were generated, each indivisual mutant must be assessed for phenotypic defects 

by using a variety of assay techniques. Since, V. vulnificus secretes a variety of toxins, 

in vitro detection methods of the toxins were often used in this organisms. However, 

expression of pathogenic factors in vitro may not always reflect the actual expression of 

the pathogenic genes in the complicated host environments at the time of infection. Very 

few studies have been applied in vivo screening for V. vulnificus infection study. For the 

study of V. vulnificus infection, mice have been used as experimental animals to study 

the host–pathogen interactions; however, using large number of mammals is costly and 

may be unethical. Recently, several screening methods for the bacterial in vivo virulence 

genes have been developed. Thus, we attempted to use in vivo screening method to 

investigate the virulence genes of V. vulnificus, in which relatively fewer animals are 

sacrificed. We applied a powerful negative selection transposon insertion method, 

signature-tagged mutagenesis (STM) (19). In STM, mutations are introduced by random 

insertion of transposons and each transposon has a different “Tag” DNA sequence that is 

specifically recognized it. STM allows us to screen attenuated mutants from a pool of 

large numbers of mutants simultaneously in a single animal model. In this chapter, we 

attempted to STM to investigate V. vulnificus virulence genes that are active in vivo. 

Using STM, we identified several possible virulence genes of V. vulnificus. 
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2.1  MATERIALS AND METHODS 

 

2.1.1 Bacterial strains, plasmids, and growth conditions 

 V. vulnificus used in this study originated from a clinical isolate, OPU1, and its 

rifampicin (Rf)-resistant variant, V. vulnificus OPU1-Rf. Escherichia coli BW19795 was 

provided by Dr. Barry L. Wanner (20). E. coli DH10BTM competent cells were 

purchased from Life Technologies (Life Technologies, Carlsbad, CA, USA). A 

signature-tagged mini-Tn5Km2 transposon in pUT delivery suicide plasmid pool was 

provided by Dr. David W. Holden (19). Bacterial strains were grown in a Luria-–Bertani 

(LB) medium [10 g tryptone (Japan BD, Tokyo, Japan), 5 g yeast extract (Japan BD), 

and 10 g NaCl/l] (21) and incubated at 37 °C unless otherwise stated. Antibiotics were 

added to the medium at the rate of 100 μg/ml for Rf, 50 μg/ml for kanamycin (Km), 

and/or 100 μg/ml for ampicillin (Am). 

 

2.1.2 Animal experiments 

 Five-week-old female ICR mice (SPF/VAF, Crlj;CD1, Charles River 

Laboratories Japan, Yokohama, Japan) were used for animal experiments. Mice were 

subcutaneously injected in the back with 250 μg/g body weight of iron dextran 4 hr 

prior to inoculation to enhance their susceptibility to V. vulnificus. All animals used in 

the present study were cared for in accordance with the guidelines for animal treatment 

of Kitasato and Okayama Universities, both of which conform to the standard principles 

of laboratory animal care. 
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2.1.3 Preparation of digoxigenin (Dig)-labeled DNA probes 

 Multiplied signature-tagged portions were prepared using PCR. Templates for 

PCR were heat-denatured extracted DNA from mutant pools. The Dig-labeled 

oligonucleotides P214 (5′-Dig-TACCTACAACCTCAAGCT-3′) and P295 (5′-Dig-

CATGGTACCCATTCTAAC-3′), which recognize common arms adjacent to the 40-bp 

signature-tagged random sequence regions, were used as PCR primers (Fig. 1). PCR 

was conducted at 95 °C for 5 min, followed by 25 cycles at 95 °C for 30 sec, 55 °C for 

45 sec, and 72 °C for 10 sec, and maintained at 4 °C. 

 

 

Figure 1. Signature-tagged mini-Tn5Km2. The transposon mini-Tn5Km2 was incorporated into the V. 

vulnificus genome DNA when pUT mini-Tn5Km2 was transferred to V. vulnificus by conjugation. 

Signature tags comprised unique sequences of a 40-bp variable region flanked by invariable arms on 

either side of the variable region. The mutants with different signature tags were distinguished by 

hybridization. Invariable arms allowed for amplification of the signature tag by PCR. Primers P272 and 

P279 were used to prepare unlabeled target DNA on hybridization membranes. DIG-labeled primers P214 

and P295 were used to prepare DNA probes labeled at the 5′-end nucleotide. 
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2.1.4 Dot hybridization 

 Target DNA for dot hybridization was prepared by PCR using pUT plasmids 

harboring signature-tagged mini-Tn5Km2 as templates and primers P279 (5′-

CTAGGTACCTACAACCTC-3′) and P272 (5′-CATGGTACCCATTCTAAC-3′) (Fig.1). 

The DNA samples were diluted to 50 ng/μl with 100 ng/μl of sheared salmon sperm 

DNA (sssDNA), denatured at 95 °C for 5 min, and chilled on ice. A 1-μl aliquot of the 

denatured target DNA was blotted onto the identical position of each of the 81 sheets of 

Hybond-N+ membrane (10 cm × 10 cm, GE Healthcare Japan, Tokyo, Japan), dried, and 

fixed under UV light. The sheets were maintained at 4 °C until used. 

 The hybridization processes were performed in a plastic bag using a Dig-

labeled hybridization kit (Roche Diagnostics, Mannheim, Germany). The membrane 

was incubated with prehybridization solution (5× SSPE (21), 3× Denhardt’s solution, 

1% SDS, 0.1 mg/ml denatured sssDNA) without formamide (0.2 ml/cm2 hybridization 

membrane) for 1 hr at 45 °C. The membrane was transferred into hybridization solution 

[prehybridization solution containing 50% (v/v) formamide] (0.1 ml/cm2 hybridization 

membrane). Thereafter, a heat-denatured Dig-labeled DNA probe was added to the 

hybridization solution at a concentration of 300 ng/ml, mixed, and incubated for 2 hr at 

45 °C in a water bath. The membrane was added to washing solution [2× SSPE, 0.3 M 

NaCl, 20 mM sodium dihydrogen phosphate, 20 mM EDTA (pH 7.4), and 1% SDS] and 

shaken to remove nonspecific probe for 5 min (this was discarded). The washing 

process was repeated twice. The membrane was transferred to preheated washing 

solution and incubated for 1 hr at 70 °C, followed by incubation in 2× SSPE for 5 min. 

 The hybridized Dig-labeled probes were detected according to the instruction 

manual using a Dig detection kit (Roche Diagnostics). The membrane was exposed 
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overnight to a sheet of X-ray film (Bio Max, Kodak Japan, Tokyo, Japan) and 

developed. 

 The intensities of 80 hybridization signals in a sheet of hybridization 

membrane were scored by the naked eye from 0 to 5 in every film to minimize 

experimental variations. Hybridization signals with the strongest intensity in the film 

were given a score of 5 and hybridization signals with no intensity were given a score of 

0. The intensities of hybridization signals with INPUT and with OUTPUT probes were 

compared. 

 

2.1.5 DNA analysis 

 DNA sequencing was performed with an Applied Biosystems DNA sequencing 

system (Applied Biosystems, Waltham, MA, USA) and a BigDye terminator cycle 

sequencing kit (Applied Biosystems). Sequence homologies were searched with the 

BLAST search algorithm of the National Center for Biotechnology Information. All 

recombinant DNA experiments in the present study were performed in accordance with 

the guidelines for recombinant DNA experiments of Okayama Prefectural University, 

Okayama University, and Kitasato University. 

 

 

2.2 RESULTS 

 

2.2.1 Construction of transposon insertion mutant library 
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 To identify the pathogenic genes of V. vulnificus, we constructed a transposon 

insertion mutant library. V. vulnificus OPU1-Rf was mated with E. coli BW19795 

harboring pUT mini-Tn5Km2 labeled with one of the 80 unique signature tags (T01–

T80). This suicide conjugative vector plasmid, pUT, can multiply only in bacteria (such 

as E. coli BW19795) harboring the pir gene. When pUT was introduced in V. vulnificus 

by conjugation, the transposon mini-Tn5Km2 was transferred from pUT into V. 

vulnificus replicons, allowing V. vulnificus to grow on Km-containing agar medium. 

Conjugation was performed 80 times with each of the respective signature tags (T01–

T80). Eighty-one V. vulnificus colonies resistant to both Km and Rf were isolated as 

transposon insertion exconjugants from each conjugation. In total, 6,480 transposon-

inserted V. vulnificus mutants were isolated (81 exconjugants × 80 signature tags). The 

6,480 insertion mutants were divided into 81 set groups (S01–S81) as each set group 

contained 80 transposon insertion mutants, each having a unique signature-tagged 

transposon of between T01 and T80. Each set group was used for as a pooled INPUT 

culture for mouse injection and for template DNA to prepare an INPUT probe. 

 

2.2.2 In vivo passage of INPUT pools 

 To screen in vivo attenuated mutants, the mutants were inoculated into mice by 

each set group. Eighty mutants in a set group were separately cultured in 96-well flat-

bottomed microculture plates containing LB medium for 6 hr at 30 °C. Thereafter, 100-

μl aliquots of each culture were pooled (S01−S81 INPUT pools). Each INPUT pool 

containing approximately 3.0 ± 0.8 × 105 cfu mutants in phosphate-buffered saline 

containing 0.01% gelatin (PBSG) was injected into an iron-overloaded mouse 



12 

 

intraperitoneally. This inoculum size of V. vulnificus OPU1-Rf allows iron-overloaded 

mice to survive for at least 7 hr after injection but would kill all mice within 36 hr (data 

not shown). Mutants that survived and propagated in the mouse were recovered from 

blood samples obtained by heart puncture 5 hr after the injection of the INPUT pools. 

Heart blood was inoculated onto LB agar plates containing Km and Rf. Approximately 

2–20 × 103 colonies resistant to both Km and Rf had grown after overnight culture at 

37 °C. All colonies were scraped up and frozen to be stocked as an OUTPUT pool to 

prepare OUTPUT probes. 

 

2.2.3 Screening of tentative attenuated mutants by hybridization 

 To estimate attenuated mutants, DNA–DNA hybridization tests were performed 

and the intensity of hybridization signals with INPUT and OUTPUT probes were 

compared. If tags were detected with INPUT probes but not with the corresponding 

OUTPUT probes, those mutants with the tag were expected to lose their ability to 

survive and multiply in the mouse (Fig. 2). We selected 360 candidate mutants whose 

hybridization intensities were decreased by more than 2 points as temporarily-attenuated 

mutants (primary screening). The candidates were subjected to in vivo passage and 

hybridization tests again, as performed in the primary screenings. Thirty mutants whose 

hybridization intensities differed by more than 3 points were selected as tentative 

attenuated mutants (secondary screening). 

 

2.2.4 Virulence of tentative attenuated mutants 
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 To confirm the attenuation of the 30 tentative attenuated mutants, lethal doses 

of the mutants were examined using iron-overloaded mice. Transposon-inserted mutants 

were cultivated stationarily at 37 °C in 3 ml LB broth for 6 hr. A 0.5-ml aliquot of 10-

fold serially-diluted cultures was inoculated into iron-overloaded mice intraperitoneally 

and the status (dead or alive) of the mice was checked after 36 hr. The lethal dose of the 

parent strain, OPU1-Rf, was approximately 10–102 cfu/mouse. Unexpectedly, the lethal 

doses of 19 out of 30 mutants were as low as that of OPU1-Rf. However, the lethal 

doses of the other 11 mutants were more than 103 cfu/mouse (Table 1). Particularly, the 

lethal doses of S10T79 and S46T31 were as high as 106 cfu/mouse, indicating that the 

virulence of the mutants appeared to have decreased to approximately 1/100,000 

compared with the parent strain OPU1-Rf. 

 

 

Figure 2. Identification of tentative attenuated mutants in vivo by hybridization. Lost mutants of V. 

vulnificus during infection were identified by DNA–DNA hybridization tests. Two identical membranes 

dotted with the individually amplified DNA tags (from A1 to H10) were hybridized to the DIG-labeled 

(A) INPUT and (B) OUTPUT probes. The tags that hybridized to the INPUT probe but not to the 

OUTPUT probe (such as D10, H4, and H7) were expected to have been lost during infection in the 

mouse. Therefore, mutants with the tag at D10, H4, and H7 were selected as tentative attenuated mutants. 
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2.2.5 Insertion sites of mini-Tn5Km2 transposon 

 To clone transposon insertion sites of attenuated mutants, whole DNA was 

digested by SalI such that it left intact the I-end of the transposon, the signature tag, and 

the Km resistance gene of mini-Tn5Km2. The digested DNA fragments were cloned 

into pUC18, followed by transformation into E. coli DH10B. Plasmid DNA was 

extracted from colonies resistant to both Km and Am, in which the transposon insertion 

sites of genomic DNA were expected to be cloned. DNA sequences adjacent to the 

transposon were amplified by PCR with the primers P272 or P279, which were 

annealed to the tag of mini-Tn5Km2 (Fig. 1). 

 The DNA sequences obtained were searched for sequence homologies with V. 

vulnificus genome sequences using the BLAST search algorithm of the National Center 

for Biotechnology Information. The genes with the highest identification with the 

database were predicted as transposon-disrupted genes of the attenuated mutants. The 

putative disrupted genes of V. vulnificus identified by STM are summarized in Table 1. 

The genes obtained in this study may be related to purine metabolism (S10T79, 

S65T36), sialic acid synthesis (S46T31, S48T58, and S76T76), cell wall biosynthesis 

(S38T76), membrane transporter (S34T71), and unknown function (S20T62, S37T71). 

In two mutants (S43T04 and S68T70), transposon-inserted regions showed no 

homology to any sequence in the GenBank database. 
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Table 1. Characterization of V. vulnificus genes identified by STM 

Mutant 
Putative product of transposon 

disrupted genea) 
Protein IDa) 

Putative 

function 
Lethal dose(cfu)b) 

S10T79 IMP dehydrogenase AAO08942.2 
Purines 

metabolism 
106-7 

S65T36 
Phosphoribosylformylglycinamidine 

cyclo-ligase 
AAO10300.1 

Purines 

metabolism 
105-6 

S46T31 
UDP-N-acetylglucosamine-2-

epimerase 
AAO09311.1 

Sialic acid 

synthesis 
106-7 

S48T58 
UDP-N-acetylglucosamine-2-

epimerase 
AAO09311.1 

Sialic acid 

synthesis 
105-6 

S76T76 
UDP-N-acetylglucosamine-2-

epimerase 
AAO09311.1 

Sialic acid 

synthesis 
105-6 

S38T76 Aspartokinase AAO10017.2 
Cell wall 

biosynthesis 
104-5 

S34T71 Malate Na (+) symporter AAO11254 
Membrane 

transporter 
103-4 

S20T62 Hypothetical protein AAO10404.1 Unknown 105-6 

S37T71 Hypothetical protein AAO10118.1 Unknown 103-4 

S43T04 Unknown  Unknown 105-6 

S68T70 Unknown  Unknown 104-5 

a)Gene and protein IDs are from V. vulnificus CMCP6 (GenBank accession numbers: AE016795 and 

AE016796) 

b)Lethal dose was determined by injection of serially diluted mutant cultures into iron-overloaded mice. 

 

2.2.6 Vaccination with the mutant S10T79 against V. vulnificus infection 

 To examine whether or not the attenuated mutants had immunogenicity against 
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V. vulnificus infection, the vaccination of mice was attempted using one of the most 

attenuated mutants, S10T79. Using 5 iron-overloaded mice in a group, the S10T79 

mutant was intraperitoneally injected at a dose of 2.5 × 103, 2.5 × 104, 2.5 × 105 cfu, or 

mocks, twice with a 2-week interval. One week after the second injection, the mice 

were challenged by intraperitoneal injection with virulent V. vulnificus OPU1, which has 

a lethality of approximately 10 cfu (data not shown), at a dose of 2.5 × 105 cfu. As 

shown in Table 2, of the mice injected with PBSG as mocks, all 5 died within 36 hr. On 

the contrary, all but one of the immunized mice survived more than 36 hr with no 

symptoms. This result indicates that the mutant S10T79 was effective in preventing V. 

vulnificus infection in experimental vaccination. 

 

Table 2. The effects of vaccination on prevention against V. vulnificus infection in mice 

Immunized dose with (cfu/mouse) Dead /Challenged (Numbers of mice) 

Mock (PBSG buffer) 5/5 

2.5 × 103 1/5 

2.5 × 104 0/5 

2.5 × 105 0/5 

A signature-tagged mini-Tn5Km2-inserted mutant V. vulnificus, S10T79, was intraperitoneally injected 

into mice as a vaccine. Vaccinations were given twice with a two-week interval. A week after the 

secondary vaccination, the mice were challenged with the original strain, V. vulnificus OPU1. The status 

(dead or alive) of mice was judged after 36 hr post the challenge injection. 
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2.3 DISCUSSION 

 

 STM is a negative selection method used to screen transposon insertion 

mutants that have lost their ability to survive and grow in the host. This method has 

been applied to screen the virulence factors of many bacterial pathogens (19,22-25). The 

purpose of this study was to confirm whether STM can be used to identify the virulence 

genes of V. vulnificus. We obtained 11 attenuated mutants whose disrupted genes were 

suggested to be involved in in vivo growth during infection (Table 1). 

 In two of the mutants, the transposon-inserted genes encoded enzymes 

involved in purine metabolism, IMP dehydrogenase (guaB; S10T79) and 

phosphoribosylformylglycinamidine cyclo-ligase (purM ; S65T36). Many studies have 

shown that purine nucleotides are required for bacterial growth and purine metabolism 

plays an important role in bacterial virulence (26-28). Kim et al. (29) reported that in the 

disruption of V. vulnificus nucleotide synthesis genes, AICAR transformylase/IMP 

cyclohydrolase (purH) and UMP kinase (pyrH) decreased in virulence. In S10T79 and 

S65T36, purine nucleotide synthesis in vivo may have been reduced, which may have 

led to the attenuation. 

 In three of the attenuated mutants (S46T31, S48T58, and S76T76), transposons 

were inserted into the gene for UDP-N-acetylglucosamine-2-epimerase (neuC), which is 

involved in N-acetylneuraminic acid (Neu5Ac) biosynthesis. Neu5Ac is used for the 

sialylation of LPS and for capsule formation, which is a significant factor for V. 

vulnificus virulence (30). In E. coli, neuC mutants express an acapsular phenotype (31) 

and NeuC is an essential enzyme in the biosynthesis of the capsule in E. coli. However, 
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all 3 neuC mutants of V. vulnificus represented opaque colonies, indicating capsule 

formation. Further studies are required to examine the contribution of neuC to 

virulence, particularly to capsule formation. 

 In the mutant S38T76, the aspartokinase gene (AAO10017.2) was disrupted. In 

V. vulnificus, little attention has been paid toward aspartokinase as a virulence factor, 

although in other pathogens, the gene has been suggested to be a virulence factor 

(32,33). The aspartokinase gene (ask) of mycobacteria is involved in the synthesis of 

peptidoglycan, the main function of which is to protect cells against osmotic pressure. 

 In S34T71, the gene for the malate Na (+) symporter was found at the 

transposon insertion site. Several transporters are known to play a key role in the 

homeostasis of intracellular pH, cellular Na+ content, and cell volumes in bacteria (34). 

 For the development of the disease, V. vulnificus has to multiply in the human 

body; therefore, its ability to survive in the host (to acquire and metabolize nutrients and 

to escape from immune systems) could be authentic virulence factors in V. vulnificus. 

Using STM, we obtained 11 attenuated mutants whose disrupted genes were suggested to 

be involved in in vivo growth during infection. Thus, the present study demonstrates the 

applicability of STM to the search for the virulence factors of V. vulnificus. To confirm 

the attenuation of the tentative mutants, each candidate was solely inoculated into mice. 

Unexpectedly, 19 of the 30 mutants revealed lethality comparable to that of the parental 

strain. However, a similar phenomenon has been found in another STM study in Yersinia 

pestis (35). Because the mutants were mixed and inoculated into mice simultaneously 

during STM, the mutants that succumbed to growth competition would have been chosen 

as the attenuation candidates. Thus, 19 mutants may have been defeated by competition 

in multiplying when inoculated into mice simultaneously with others. We may also have 
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to recognize the possibility that some of the mutants may have reduced growth ability 

under high free-iron conditions in in vivo environments in iron-overloaded mice. Another 

possibility is that in some mutants, attenuation may have arisen on account of the polar 

effects of transposon insertion. To negate these possibilities, complete removal of the 

genes from the genome and lethality tests are required, together with demonstration of 

the recovery of virulence by trans complementation tests of the genes. Although we need 

further studies, STM in V. vulnificus promises to contribute to the analysis of pathogenesis 

and to the development of safe and effective vaccines. 
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Chapter 3 

 

A silkworm infection model to study  

the Vibrio vulnificus virulence genes  
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 In chapter 2, we applied STM to identify virulence factor of V. vulnificus and it 

was shown that STM is a useful method to screen virulence genes in vivo. In this study, 

we found the virulence factors of V. vulnificus can be divide into two groups. First, the 

virulence consists of bacterial factors required for evasion of host defenses and nutrients 

acquisition within the host. Second, the virulence includes factors involved in 

cytotoxicity, such as hemolysin. In the STM system, different strains were infected 

together into the animal and attenuated mutants were detected by loss of their tags. So 

that means it is unlikely to detect mutations in second group of virulence genes. 

Because although the gene for the certain toxins was disrupted by transposon insertion, 

the mutant and tag was still exist. Only first group of virulence genes would be find by 

STM. It can be a limitation of STM. And more importantly, although STM can reduce 

number of animal, it still make problem costly and ethically. Recently, invertebrate 

infection models using nematodes, such as Caenorhabditis elegans (36), and insects, 

such as Galleria mellonella (37), are being applied to investigate bacterial virulence 

genes (38). Moreover, an infection model using silkworms (Bombyx mori) to study 

bacterial pathogenesis has been reported (39). Silkworms are relatively easy to breed in 

laboratories and is large enough for injection of samples into the hemolymph and 

intestine. The objective of the current study is to use a silkworm model to study V. 

vulnificus virulence. 

 

3.1 MATERIALS AND METHODS 

 

3.1.1 Bacterial strains, plasmids, and medium 
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 The V. vulnificus OPU1 strain was clinically isolated, and its rifampicin (Rf)-

resistant variant, V. vulnificus OPU1-Rf, was used in this study. Escherichia coli 

BW19795 was provided by Dr. Barry L. Wanner (20) and used as a pUT donor for 

conjugation. E. coli DH10BTM competent cells were purchased from Life Technologies 

(Carlsbad, CA, USA). The signature-tagged mini-Tn5Km2-y67 transposon in the pUT 

delivery suicide plasmid pool was provided by Dr. David W. Holden (19). Bacterial 

cells were grown at 37°C in Luria–Bertani (LB) medium [10 g tryptone (Japan BD, 

Tokyo, Japan), 5 g yeast extract (Japan BD), and 10 g NaCl/l] (21) unless otherwise 

described. M9 minimal medium without glucose (21) was used for bacterial 

conjugation. The following antibiotics were added to the medium at the indicated 

concentrations: rifampicin (Rf ; 100 μg/ml), kanamycin (Km; 50 μg/ml), and ampicillin 

(Am; 100 μg/ml). Bacterial growth was monitored by turbidity using a 

spectrophotometer (Spectronic 20A, Shimadzu Corp., Kyoto, Japan). 

 

3.1.2 Silkworm lethality assay 

 Bacteria were inoculated into silkworms using the protocol of Hamamoto et al 

(40). The silkworms were raised from fertilized silkworm eggs (Hu·Yo × Tsukuba·Ne) 

purchased from Ehime Sansyu Co. (Yawatahama, Japan). The eggs were incubated in a 

clean bench (CCV-800E-AG; Hitachi Koki Co., Ltd., Tokyo, Japan) at 25°C in the dark 

for 3-5 days, according to the manufacturer’s instructions. The hatched larvae were fed 

artificial food (Silkmate 2S, Nosan Corp., Yokohama, Japan) for approximately 3 

weeks. Larvae shed their shells four times and the fifth-instar larvae were fed antibiotic-

free artificial food (Silkmate, Katakura Industries, Tokyo, Japan) for 24–26 h just prior 
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to inoculation. Bacteria were cultivated at 37°C in 2 ml of LB broth until optical density 

at 600 nm (OD600) reached 1.0. The bacterial cultures were diluted 1:10 with 10 mM 

phosphate-buffered saline (pH 7.3), containing 0.01% gelatin (PBSG). Culture filtrates 

were prepared by filtering the diluted cultures through a 0.45-μm filter (Nihon Millipore 

K.K., Tokyo, Japan). A 50-μl aliquot of diluted bacterial cell suspension or culture 

filtrate was injected into the hemolymph of silkworms using a 1-ml plastic disposable 

tuberculin syringe attached to a 27-gauge needle (Terumo Corp., Tokyo, Japan). The 

quantities of bacteria injected were estimated by colony forming units (cfu) after 

inoculating the diluted bacterial culture suspensions on LB agar and counting the 

number of colonies that grew after 18 h at 37°C. The inoculated silkworms were 

maintained in plastic containers without feeding, and larval status (dead or alive) was 

checked. Silkworms were considered dead when they showed no reaction to touch. 

 

3.1.3 Construction of the transposon insertion mutants by conjugation

 Transposon insertion mutants were constructed by conjugation, as described 

previously (41). Briefly, V. vulnificus OPU1-Rf was mated with E. coli BW19795 

harboring the pUTy69 conjugative suicide plasmid, which contained the mini-Tn5Km2-

y67, a Km resistant transposon. The transposon-inserted mutants were judged by growth 

on Km- and Rf-containing agar medium. 

 

3.1.4 Cloning and sequence analysis of the attenuated mutant 

 The locations of the transposon-inserted regions in the mutant genome were 

determined by sequencing the DNA sequence adjacent to the insertion site, as described 
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previously (41). 

 

3.2 RESULTS 

 

3.2.1 Lethality of V. vulnificus to silkworms 

  To investigate the applicability of silkworms for in vivo V. vulnificus infection 

experiments, we first examined lethality of V. vulnificus to silkworms. The spontaneous 

Rf-resistant V. vulnificus OPU1-Rf was selected for injection into silkworms because the 

infectivity and lethality of the strain have been confirmed in mice, and we established a 

mutagenesis method using the mini-Tn5Km2 transposon (41). 

 Fresh V. vulnificus OPU1-Rf cultures with OD600 of 1.0 were diluted 1:10 with 

PBSG solution to cell densities of 2.4 × 107 and 2.4 × 108 cfu/ml and were maintained 

for up to 2 h at room temperature until they were inoculated into silkworms. A 50-μl 

aliquot of diluted culture specimen was injected into the hemolymph of the silkworms 

from a syringe through the dorsal surface, in a manner similar to the infection into the 

human blood stream. The silkworms slowed immediately after the injection but behaved 

normally after approximately 1 h. This blunting silkworm behavior was also observed 

when they were injected with diluent (PBSG) alone. Thus, this phenomenon may have 

been related to the injection stimulus, e.g., possibly the body temperature decrease 

caused by the injected solution. As shown in Fig. 3, silkworms injected with V. 

vulnificus OPU1-Rf started dying after 24 h. On the other hand, silkworms injected with 

PBSG or culture filtrate were alive at 72 h. In deceased silkworms, the points of 

injection turned black within a few hours and these black spots gradually spread 
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throughout the entire body. All silkworms injected with 1.2 × 107 cfu/silkworm died 

within 48 h. A reduced dose of 1.2 × 106 cfu/silkworm extended survival and 60% of the 

worms survived for 72 h (Fig. 3). Thus, V. vulnificus virulence to silkworms may be a 

dose-dependent phenomenon around these doses, although only two doses were 

examined in this study. These results indicate that V. vulnificus is lethal to silkworms, 

and that silkworms can be used for V. vulnificus virulence studies. An injection of 1.2 × 

107 cfu/silkworm killed all silkworms within 48 h; thus, we used 107 cfu/silkworm in 

subsequent experiments. 

 

 

Figure 3. Lethality of V. vulnificus to silkworms. V. vulnificus OPU1-Rf bacterial cultures (1.2 × 106 

or 1.2 × 107 cfu/silkworm), V. vulnificus OPU1-Rf culture filtrates, or PBSG were injected into the 

silkworm hemolymph. 

 

3.2.2 Screening of the V. vulnificus attenuated mutants using the silkworm lethality 

test 

 Because the silkworms were sensitive to V. vulnificus infection, we attempted 

to use a silkworm infection test to search for V. vulnificus pathogenic genes against 
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silkworms. The attenuated mutants that lost pathogenicity to silkworms were screened 

from the 1,016 transposon insertion mutants. 

 The transposon insertion mutants were cultured for 4–6 h at 37°C with shaking. 

Culture fluid with OD600 of 1.0 was diluted 1:10 with PBSG, and a 50-μl aliquot was 

injected into the hemolymph of silkworms. Approximately 3.3 × 107 ± 2.9 × 107 cfu of 

the organism were injected into each silkworm, and silkworm status (dead or alive) was 

monitored for 5 days. While attempting to search for less virulent mutants that did not 

kill silkworms within 5 days, 78 candidates were obtained (primary screening). To 

reduce experimental error, a second inoculation of the first candidate mutant was carried 

out. Of the 78 candidates, 16 mutants did not kill the silkworms within 5 days after 

injection (secondary screening). To confirm the avirulent properties of the secondary 

screened candidates, each of the 16 secondary screened candidates was injected into 

five silkworms, and the candidates which all five injected silkworms survived for 5 

days, were selected as attenuated mutants. Fifteen of 16 mutants were not selected as an 

attenuated mutant in this study because silkworms died during the observation period. 

Finally, the mutant SW998 was avirulent to all five silkworms (Fig. 4). 
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Figure 4. Survival durations of silkworms after receiving an injection of V. vulnificus SW998. Five 

silkworms were injected each with 1:10 diluted culture media of the V. vulnificus OPU1-Rf parent strain 

and the transposon-inserted mutant SW998. 

 

3.2.3 Transposon insertion sites in the attenuated mutant 

 Because SW998 was avirulent in silkworms (Fig. 4), the virulence-related gene 

was expected to have been disrupted by the transposon insertion in SW998. The DNA 

sequences adjacent to the transposon insertion sites were determined to locate the 

transposon inserted gene in the SW998 genome. The whole SW998 DNA was digested 

with SalI and ligated into the pUC18 SalI site to clone the transposon insertion site, and 

several recombinant plasmids containing the Km-resistant gene were cloned (Fig. 5). 

Because the transposon-inserted sites were expected to be cloned in these clones, the 

DNA neighboring the transposon was sequenced using the P279 primer oligonucleotide, 

which was synthesized to anneal to the I-end of the transposon (Fig. 5). The DNA 

sequences obtained were subjected to a homology search using published V. vulnificus 

genome sequences. The nucleotide sequences of the cloned V. vulnificus DNA fragment 

adjacent to the transposon insertion site were highly homologous to the V. vulnificus 

rtxA gene, which has been reported as a V. vulnificus cytotoxic factor (42). 
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Figure 5. The transposon-inserted site of V. vulnificus SW998. (A) To find the transposon-inserted gene, 

the V. vulnificus SW998 transposon insertion region was cloned into the pUC18 plasmid vector, as 

described previously (18). The SalI-digested genomic DNA of V. vulnificus SW998 was cloned into the 

pUC18 SalI site with kanamycin-resistance as an indicator. The P279 oligonucleotide primer, which was 

designed to hybridize to the I-ends of the mini-Tn5Km2 transposon, was used to amplify the V. vulnificus 

SW998 transposon insertion site. Kmr, kanamycin resistance gene; arrow, direction of DNA sequencing. 

(B) The V. vulnificus chromosomal region around the RTX element and transposon insertion site are 

presented schematically. Arrows indicate the transcriptional directions and coding regions of the V. 

vulnificus YJ016 genes (accession no. NC_005140). The line under the arrow indicates gene location. 
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3.3 DISCUSSION 

 

 Some in vivo experiments designed to investigate the precise mechanisms of 

microbial infections are difficult to replace by in vitro experiments or models. Mice are 

often used to study V. vulnificus infection; however, using many animals may not 

always be economically and ethically feasible. Random transposon insertion 

mutagenesis and subsequent screening of the attenuated mutants have been applied to 

search for virulence genes in many bacterial pathogens. Thousands of mice would be 

required to isolate attenuated mutants. Animal experiments using mammals are still 

required; however, to obtain satisfactory results, many animals may need to be 

sacrificed. In vivo infection models using invertebrates instead of mammals have been 

successfully applied to pathogenic microbe studies, e.g., the Staphylococcus aureus 

virulence genes identified using a silkworm infection model (43). The purpose of this 

chapter was to examine whether the silkworm infection model could be applied to study 

V. vulnificus virulence. 

 In this chapter, silkworms were demonstrated to be sensitive to the V. vulnificus 

because they were killed by the inoculation of this bacterium into the hemolymph (Fig. 

3). Kaito et al (44) reported that several bacterial species, such as S. aureus, 

Streptococcus pyogenes, Pseudomonas aeruginosa, and V. cholerae, which are human 

pathogens, can also infect and kill silkworms when injected into the blood stream of 

silkworms, whereas non-pathogenic laboratory strains of E. coli cannot. Although we 

have no direct evidence whether the silkworms died due to the factors same as 

mammals, silkworms may recognizes virulence factors of pathogens because they have 
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the Toll and Imd pathways, which are homologous to the mammalian Toll-like receptor 

and tumor necrosis factor receptor signaling pathways, respectively (45). Using the 

silkworm infection model, we obtained the SW998 attenuated mutant strain, in which 

the rtxA gene was disrupted by a transposon insertion. The rtxA gene is a member of the 

rtx gene cluster in the V. vulnificus genome. RtxA has been suggested to be a toxin 

essential for V. vulnificus virulence, which has been confirmed by experimental 

infection of a mouse model and in an in vitro tissue culture model (42). Injection of 

culture filtrate did not kill the silkworms (Fig. 3), thus suggesting that RtxA expression 

increased after the pathogen interacted with host cells, as reported previously (46). That 

is, the bacteria secreted RtxA in the silkworm in vivo and RtxA may be toxic to 

silkworms, although we would need to completely remove the genes from the genome 

and conduct a lethality test to demonstrate that RtxA is actually toxic to silkworms. 

 In conclusion, silkworms died when inoculated experimentally with V. 

vulnificus. Together with this, the rtxA gene was identified successfully using this 

infection model. We are expecting this model to be useful for studying V. vulnificus 

virulence factors and to be helpful for developing effective therapies to protect against 

V. vulnificus infection. 
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Chapter 4 

 

Conclusion and remarks 
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 V. vulnificus causes highly lethal opportunistic infection. The knowledge of 

virulence factors would be helpful for developing effective therapies and preventive 

methods against V. vulnificus infection. To find virulence factors of pathogen, random 

transposon mutagenesis has been often used. After transposon inserted mutants were 

generated they were tested for attenuated in various screening system. In vitro screening 

have been often used to find attenuated mutant. However, in vitro screening have the 

potential to overlook virulence factors that activated in vivo. For V. vulnificus, the ability 

to growth in the human body is the important virulence factor. Very little in vivo 

screening studies of V. vulnificus infection have been reported. Although animal study is 

very important to study pathogens, we always meet the problem costly and ethically. In 

this thesis, I attempt to use new two methods to identify V. vulnificus virulence factors 

in vivo. 

 In chapter 2, I attempted to apply STM to investigate V. vulnificus virulence 

genes that are active in vivo. STM allows us to screen attenuated mutants from a pool of 

large numbers of mutants simultaneously in a single animal model. We can save the 

number of animal to be sacrificed by STM. Eleven attenuated mutants whose disrupted 

genes were suggested to be involved in in vivo growth during infection were obtained. 

Among 11 attenuated mutants, S10T79 which the IMP dehydrogenase gene were 

disrupted by transposon insertion was most attenuated and it has preventive effect 

against V. vulnificus infection in mouse infection model. IMP dehydrogenase is the 

enzyme that converts IMP to xanthosine monophosphate (XMP), which is the rate-

limiting step in the de novo synthesis of guanine nucleotides. IMP dehydrogenase 

inhibitors are used as antiviral and immunosuppressive medicines. Purine metabolism 

plays an important role in various bacterial virulence. Thus IMP dehydrogenase could 
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be a target for antimicrobial agents against V. vulnificus and other bacteria. 

 In chapter 3, I attempted to use invertebrate infection models using silkworms 

to study V. vulnificus virulence. Silkworms were demonstrated to be sensitive to the V. 

vulnificus and using the silkworm infection model, an attenuated mutant strain, in which 

rtxA gene was disrupted by a transposon insertion were screend. I expect to the 

silkworm infection model could be used for various purpose to study V. vulnificus 

infection. For example, it would be useful to search risk factor of host side. High serum 

iron is one of risk factor of V. vulnificus infection. Therefore we have often used iron to 

make mice to be sensitive to V. vulnificus. In this study, a large quantity of V. vulnificus 

were inoculated to silkworm because silkworms did not die with a small number of 

bacterial injection even iron was used. We may search the factors which make silkworm 

to be sensitive to V. vulnificus. In addition, clinically used antibiotics are effective for 

silkworm (47). Therefore, novel antimicrobial agents against V. vulnificus may be 

screened using the silkworm infection model. 

 V. vulnificus infection has gained attention in recent years as an ocean-related 

disease including both foodborne septicemia and gastroenteritis. At the same time, viral 

hepatitis (such as hepatitis B and C) kills nearly 1.2 million people annually worldwide 

(48, 49). Such patients have to be wary of ingesting undercooked seafood because 

patients with severe hepatic disorders may acquire V. vulnificus infection. Therefore, to 

prevent V. vulnificus infection, immunization with the vaccine must be beneficial for 

these high-risk patients who choose to eat uncooked fresh seafood. In the study of other 

pathogens, the mutants of the genes for purine nucleotide synthesis had a protective 

effect as vaccines in animal models (50, 51). In chapter 2, I have demonstrated that even 

in V. vulnificus, the mutant defective in purine nucleotide synthesis (S10T79) was the 
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effective vaccine, which may be on account of elicited protective antibodies against the 

pathogen. Safer vaccine would be developed by identification of antigens. 

 In this thesis I applied two new methods to study virulence factors of V. 

vulnificus in vivo. Two method were demonstrated their applicability to the search for 

the virulence factors of V. vulnificus in vivo. These two methods would be helpful to 

elucidate the mechanism of a complicated V. vulnificus infection. 
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