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Chapter 1

Introduction

1.1 Welfare Technology

The number of aging people is increasing across the world. This growing population of

aging people, who need health and care services is not equivalent with the number of

young people entering the workforce, which is decreasing. This problem is apparent

in developed countries such as Japan, Europe, and Northern America [1]. Human

resources will be faced with more di�culty to provide assistance to people in need if

they merely depend on the same services and technologies. Another similar situation

is the caring for people with a sickness or disability, who likewise require help from

human resources [1, 2]. Moreover, most of these individuals prefer to stay at home

instead of entering a healthcare center. This leads to concerns of how to provide

the services, such that this society can maintain health and well-being independently

at their place of residence [3, 4]. This concern does not exclude the possibility of

services to citizens outside this society as well. The availability of facilities capable of

supporting society's activities is able to improve their life quality.

Welfare technology is used to enhance human welfare in daily life, especially for

the welfare society using services. Welfare technology is provided as a solution to

ful�ll the needs of the welfare society, and it is expected to support human activity

8



CHAPTER 1. INTRODUCTION 9

making people more independent and obtaining a higher quality of life, with regard

to healthcare, homecare, and social activity [5, 6]. Some examples of welfare tech-

nology functions are helping to remedy disability and provide independent service,

create the possibility for people with the disease lives in their own home longer under

better conditions, and present e�cient service to be used by sta�/family in caring

and assisting citizens in providing a better quality of life by providing these services.

Welfare technology can be realized in each home and through a mobile device, such

that it can reduce the dependence on other human resources such as citizen service

centers, schools, or hospitals [4, 7].

Welfare technology mainly o�ers two technology services, namely assistive tech-

nology and monitoring technology. Assistive technology is a system or device used to

support tasks that are di�cult to achieve for people and maximize the independence

of disabled people by physical, sensory and cognitive training. The examples of assis-

tive technology are smart home [8, 9, 10], robot [11, 12, 13, 14, 15, 16], rehabilitation

software [17, 18], etc. A smart home is designed to provide comfort for residents by

automatically controlling the equipment. Robots are made to help humans in carrying

out one or more activities. Rehabilitation software can recently be developed with

a virtual reality game that uses motion as input [17, 19]. This makes the process of

therapy more pleasant for patients [20]. Rehabilitation software also allows the ther-

apy process to be organized at home under the monitoring of doctor [18]. Monitoring

technology involves equipment used inside or outside the home to monitor circum-

stances and provide alarms or information to the caregiver if an unusual condition

occurs [21]. The roles of monitoring technology can be set in the system [22] such as

medicine reminder [23, 24, 25], health/chronic care system [26, 27, 28, 29, 30], emer-

gency alarm [31, 32, 33], location monitoring system [31, 34, 35], etc. More examples

of assistive and monitoring technology implementation are provided in Table 1.1.

The development of a wide variety of sensors is accelerating the realization of

more sophisticated welfare technology. Various types of sensors are widely used to
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Table 1.1: Examples of assistive and monitoring technology implementation

Welfare Implementation Examples
technology

Assistive Smart home - Automatic controlling :
technology · Lighting [36, 37]

· Climate [38]
· Entertainment [39]
· Smart equipment [40, 41]
· Security/alarm [10, 37, 42]

Robot - Feeding robot [11, 12, 13, 14]
- Handy 1 [15] (support daily tasks:
eating, drinking, washing, shaving,
teeth cleaning, and applying make-up)
- Vacuum cleaner robot [16]

Rehabilitation - Virtual reality game
software for rehabilitation [17, 18, 19]

Monitoring Medicine - Android-based application [23]
technology reminder - Internet of Things (IoT) based [24]

- Automatic pill dispenser [25]
Health/chronic - Electrochemical glucose biosensors [26]
care system - Mobile health monitoring [27, 29, 30]

- Dietary mobile application [28]
Emergency - Mobile device and application [31]
alarm - Sensor network [32, 33]
Location - Device and application [31, 34]
monitoring - RFID mat sensor system based [35]
system

realize the assistive system for humans. Sensors, GPS, and cameras are the hardwares

frequently used to develop welfare technology [2]. The utilization of these devices is

occasionally combined, as in the sensor and camera, sensor and GPS, or camera and

GPS. The camera can contribute to monitoring using a mobile phone application.

This camera capability is owing to the growth of increasingly sophisticated camera

performance and embedment in almost all mobile devices. The camera is employed

to obtain the input images, which in some health applications are used to deter-

mine/monitor the patient's health conditions and within the smart home project to

�nd human activities in the house. The capability is sustained by the development of
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image processing techniques in computer vision [43, 44].

Most of the welfare technologies with camera devices are realized based on various

computer vision techniques. Computer vision o�ers a digital solution by analyzing the

captured image or video to generate interesting information. As applied technology

is closely related to human life, Zhu et al. proposed a prototype system utilizing the

mobile phone camera to measure nutrient intake from daily food [45]. As described

above, computer vision contributes considerably to the realization of sign language

recognition and food constituent estimation, which are representative of the support

system for human communication and healthcare in welfare technology.

However, in the research �eld of computer vision that uses only RGB images cap-

tured by a visible light camera, it is di�cult to execute tasks stably under various

conditions or di�erent environments such as lighting, weather, and background. Ro-

bustness with respect to these conditions can be achieved by integrating with data

obtained from the external sensor [46]. Multi-modal sensors (depth and thermal

sensors) and the computer vision approach are leveraged in a system to detect and

monitor aging people's activity continuously. The system was developed for direct

monitoring and analyzing patterns of aging people's activities in daily life to improve

the caregiver's ability to assist [44]. Other research developed computer vision-based

games for physical exercise [47]. This game was built using some gesture recognition

algorithms and the Kinect sensor, making it possible to deal with motion commands.

Many of the recognition tasks in computer vision are conventionally solved using

the handcrafted feature-based approach. The experts speci�cally design the approach

for feature detectors and descriptors, and subsequently the classi�cation task is usually

Figure 1.1: General handcrafted feature approach scheme
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followed by trained classi�ers [48]. Figure 1.1 shows the example of a general scheme

using the handcrafted feature approach for object recognition.

I describe representative handcrafted feature-based approaches for sign language

recognition and the food constituent estimation. As a typical handcrafted feature-

based approach for gesture recognition, Kuznetsova et al. proposed a �ngerspelling

recognition of static gesture using a consumer depth camera based on handcrafted

features [49]. The study applied the ensemble of shape function (ESF) descriptors

for feature extraction and multi-layer random forests (MLRFs) for classi�cation. Re-

search in Ref. [50] leverages RGB and depth images from the Kinect sensor to make

a �ngerspelling recognition framework. The study was performed by utilizing a depth

map in hand segmentation, using the kernel descriptor and scale-invariant feature

transform (SIFT) for hand feature extraction and the support vector machine (SVM)

for classi�cation. The handcrafted feature approach in food recognition was previ-

ously addressed in the researches [51, 52]. Joutou and Yanai proposed a multiple

kernel learning (MKL)-based feature fusion method, which adaptively integrates var-

ious kinds of image features such as color, texture, and bag-of-feature (BoF) for food

recognition [51]. Rahman et al. proposed a method for generating scale and/or ro-

tation invariant global texture features using the output of Gabor �lter banks and

demonstrated that the method provides greater classi�cation accuracy [52]. Some

food types have a high intra-class and low inter-class variance, since food consists

of typically deformable objects. Handcrafted feature-based approaches have achieved

low classi�cation accuracy because of these characteristics of food images. Moreover,

generally in image recognition, environmental circumstances such as background and

illumination a�ect the object appearances in the image. Therefore, it is di�cult to

manually construct powerful feature descriptors that entirely illustrate all kinds of

objects [53].

Nevertheless, the visual recognition paradigm changed rapidly by the appearance

of some large image datasets such as the ImageNet dataset, demonstrating the power
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of data-driven feature learning [54, 55]. The problem in handcrafted feature can

be avoided by using the deep learning that represents learning in a computational

model using multiple layer processing. These layers automatically extract features and

determine them as data input features [56]. During the past years, the convolutional

neural network (CNN), which is part of deep learning has become the most e�ective

architecture to perform visual recognition.

There are some critical points in CNN practice. CNN automatically extracts rel-

evant features and shapes from a large-scale training dataset for classi�cation; there-

fore, a su�cient dataset is required [55]. Nevertheless, data augmentation (such as

vertical/horizontal �ipping, scaling, rotation, etc.) and transfer learning methods are

frequently applied to resolve the issue of data needs in small datasets [57]. The re-

search conducted by Zhao employed CNN for object recognition on small sample data.

The studies showed that the implementation of data augmentation and transfer learn-

ing are su�cient to improve the accuracy of the result on object classi�cation [58].

However, this focused solely on two-dimensional (2D) data augmentation [57]. The

quality of the input image is another critical point on CNN. The study in Ref. [59]

reported that the images under quality distortions such as blur and noise reduce CNN

performance in image classi�cation.

In the gesture recognition task, the RGB-D sensor is generally used as the in-

put device for gesture recognition. Since it is a burden to capture many gestures

from multiple subjects using RGB-D sensors for the creation of a large-scale train-

ing dataset, data augmentation is desired. However, a data extension specialized

in three-dimensional (3D) data, which is obtained from the RGB-D sensor, has not

been proposed. In turn, in the food constituent estimation task, a dataset with large

amounts of food images given detailed constituent information � including calorie and

salinity � does not exist to date. Creating a large food image dataset with detailed

nutrition information comes at a high cost.
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1.2 Purpose of Dissertation

This dissertation focuses on sign language recognition and nutritional estimation based

on deep learning with the aim of realizing a sophisticated welfare technology using

sensors. In particular, two methods by employing CNN for classi�cation and estima-

tion are proposed. First, a data augmentation for e�ective hand posture classi�cation

has been proposed. The proposed data augmentation strategy generates a large num-

ber of hand images with various appearances based on the three-dimensional rotation

for depth image data. This is to overcome the di�culty in manually constructing

large datasets, especially hand datasets, as this involves human resources, and the

human hand is a complex articulated object. Second, the Xception model is applied

for feature extraction and classi�cation, since the Xception model is a state-of-the-art

CNN with high computational e�ciency, and has outperformed other CNN models.

On the other hand, automatic food category classi�cation and food constituent

estimation methods from food images were proposed by applying a multi-task CNN.

With the aim of achieving lifestyle disease prevention, the focus is on the recognition

of the food category and the estimation of calories and salinity. I realize the e�ec-

tive estimation of calories and salinity using a multi-task learning with food category

classi�cation, by de�ning both calorie and salinity estimation as a regression prob-

lem. The underlying assumption for a multi-task learning algorithm is that di�erent

tasks are related to each other. However, a large food images dataset annotated by

calories and salinity is not available. Therefore, I collected a lot of food images and

constructed the dataset by excluding low-resolution images before the classi�cation

task. Despite the constructed dataset being relatively small, e�ective and e�cient

learning is achieved by applying two-stage transfer learning. In our two-stage trans-

fer learning, the CNN model is �ne-tuned by using only a category-annotated food

image dataset. Then, the CNN model is again �ne-tuned by a small dataset for food

category classi�cation and food ingredient estimation, which are the primary tasks.
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In this dissertation, Chapter 2 describes deep learning, particularly with CNN.

This discussion covers the stages of preprocessing input for CNN, CNN as feature

extraction, and the modi�cation of the last CNN layer that is utilized not simply

for the classi�cation, but also for the regression. Here, the approaches to increase

the e�ectiveness of using CNN such as �ne-tuning and CNN architectures are also

discussed.

In Chapter 3, the theme is to present the e�ectiveness and e�ciency of the hand

posture classi�cation method in sign language recognition using CNN. A hand posture

classi�cation based on the Xception model and data augmentation for hand depth data

is proposed. The proposed data augmentation method using the 3D rotation on depth

data is e�ective in generating various appearances of the hand posture and increasing

classi�cation accuracy on the manually obtained dataset. On the other hand, the

Xception model, which is one of the state-of-the-art CNN models, is applied to hand

classi�cation. Furthermore, the proposed method is evaluated and compared with

state-of-the-art researches.

The development of an automatic food constituent estimation method from food

images using multi-task CNN is detailed in Chapter 4. The research focuses on the

recognition of food categories and the estimation of calories and salinity. First, a

new food image dataset has been constructed by using public images from several

recipe-gathering websites because there is no large food image dataset with detail

information on calorie and salinity. However, the number of food images with calorie

and salinity obtained from the Internet is not su�cient for the e�ective learning of

CNN. In order to address this issue, two-stage transfer learning using a large number

of food categories recognition was proposed. The e�ectiveness of calories and salinity

estimation using multi-task learning with food category classi�cation by de�ning both

calorie and salinity estimation as a regression problem is demonstrated. Here, the

relationship between the food category and salinity is also experimentally shown by

using multi-task CNN.
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Chapter 5 provides the conclusions of the overall system and comments on some

future possibilities to improve the system.



Chapter 2

Deep Learning

2.1 Overview of Deep Learning

Deep learning is a sub�eld of machine learning with a learning model that learns its

features in multiple levels. The way the human brain processes, learns, and responds

to information has inspired the level of feature learning [60]. Deep learning also

is known as deep neural network (DNN). While modest neural networks consist of

one or multiple nodes in one layer applied for learning the weight, the deep learning

mechanism is modeled in hierarchical layers for successive transformation and chained

together where the deep level takes input from the output of prior levels [61]. In

deep learning, each layer transforms the input data information into a more abstract

representation. Deep learning analyzes the complex structure in the large dataset by

employing the backpropagation algorithm to reveal how the internal parameters that

are used to calculate the representation of each layer generated from the layer ahead of

time should be changed. This makes deep learning capable of accomplishing various

challenging issues in arti�cial intelligence and even overcome other machine learning

techniques' capability [56, 62].

Deep learning received most attention after Krizhevsky proposed a deep convo-

lutional neural network to classify an ImageNet dataset consisting of 1.2 million im-

17
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ages [55]. However, previously, deep learning passed through a long history starting

from the period of gaining trust, which made the Neural Network (NN) an alternative

choice in machine learning, then passed through two forgotten periods, until the pe-

riod when NN changed its name to deep neural network [63, 64]. The growth of deep

learning began in 1940-1960, which attempted to imagine a perceptron as a simple

mathematical model inspired by the workings of neurons in the brain [65, 66, 67],

as shown in Figure 2.1. The development period of the backpropagation method oc-

curred in 1960-1980. Although NN lost trust in the late 1960s because the perceptron

could not be trained in multiple layers as it could not learn the simple Boolean func-

tion XOR [64], research using the NN model had been carried out until a neocognitron

was proposed [68]. In 1980-1990, research by Rumelhart et al. succeeded in answering

the doubt about NN from the previous period by implementing the backpropagation

approach on NN [69]. Moreover, this research also introduced weight sharing (con-

volution) and became a popular approach for learning representations. LeCun et al.

demonstrated the backpropagation approach on NN in the real-world application for

handwritten recognition in 1989 [70]. In this era, researchers also tried to develop

speech recognition by modifying the NN to process input as input �ows [71] and ex-

plore NN for the unsupervised learning approach [72, 73, 74]. The period 1990-2000

witnessed the implementation of NN in other real �elds such as control of dynamic

systems [75], robots [76, 77] and games [78, 79]. Even though NN with the backpropa-

gation method has shown better results, in the middle of 1990s the NN encountered a

problem as backpropagation did not work well for normal NN with many layers. Back-

propagation depends on �nding the error in the output layer and successively dividing

it among prior layers; thus, this matter can give rise to vanishing or exploding gradi-

ents [63]. This made NN once again lose trust, and researches turned to SVM, which

was considered more reliable [80]. Research with e�orts to improve the performance

of NN continued in 2000-2012 to regain the trust of researchers in NN, including by

changing the term NN to deep learning, until Hinton et al. succeeded in publishing a
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Figure 2.1: Linear process on fully connected layer inspired by human biological
neuron [81]

paper in 2006 that was considered a signi�cant breakthrough in NN [82]. The research

point is that multiple layers NN can be trained well, if weights are initialized smartly

rather than randomly by training each layer one by one with unsupervised learning,

starting with a much better weight than just assigning random weights and complet-

ing it with a round of supervised learning as in regular NN. After this breakthrough,

e�orts to improve deep learning are increasing [83, 84, 85, 86, 87, 88, 89, 90], which

includes the training of deep learning using graphics processor [91]. The availability

of the ImageNet dataset in 2009 to facilitate machine learning also a�ected the deep

learning performance [54]. The 2012 ImageNet competition became a notable moment

that showed the success of deep learning by Krizhevsky's research. The research ap-

plied a deep convolutional neural network, which combines ideas from the scientist's

previous researches [55]. After this period, deep learning was increasingly employed

in research or software applications.

The tremendous achievement currently acquired by deep learning is owed to the

availability of a fundamental theory for NN, large datasets, and the presence of sup-

ported hardware, such as GPU and memory. Along with these accompanying sup-

ports, deep learning exhibited several advantages [56, 92]. The �rst is robustness, as

the features design is not required in deep learning since the features are automati-

cally learned to be optimal for the task, including learning natural variations in the

data. The second is the ability to generalize, as the NN architecture can be adapted

relatively easily for many di�erent applications and data types. Subsequently, another
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advantage of the NN is scalability, as its performance will improve by appending more

data and parallelizing it.

The practice of deep learning in various �elds makes it possible to divided deep

learning into several architecture types based on their purposes, as follows:

• Unsupervised learning network

Unsupervised learning trains a set of inputs without requiring labeled data to

locate some hidden structure within that data [82]. The structure can be utilized

to �nd groups of identical/pertain data that are useful for clustering, anomaly

detection, association meaning, and latent variable models [48, 93]. Deep belief

networks and autoencoders are two network models of unsupervised learning.

The e�ective training strategy, namely the unsupervised pre-training network,

also has been achieved by applying unsupervised learning before supervised

learning. This strategy helps prevent over�tting for smaller datasets [94]. The

approach is pre-training one layer in one time and using the unsupervised learn-

ing algorithm for each layer to capture main variations from the input and hold

information. Then, deep architecture is �ne-tuned correspond to the criteria of

supervised training with gradient-based optimization [82, 84].

• Convolutional neural network (CNN)

CNN is a DNN variation that has been designed to process input data in the

form of multiple arrays. However, it is mostly applied to the image classi�cation

task. The key of CNN is to create many feature detectors that take the spatial

arrangement from the input by using local connections, shared weights, pooling,

and many layers [95]. The �rst stage comprises the convolutional layer and the

pooling layer to create the features. The convolutional layer utilizes a kernel

to locally connect the receptive �eld (a particular region of the input layer) to

a feature map. The kernel is slid over the pixels of input and performs scalar

products against the receptive �eld to create the feature maps. This process of
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creating the feature is called convolution. The convolutional layer is commonly

woven together with the pooling layer. The pooling layer aggregates multiple

feature values into a single value using a max, mean, or summation operation to

reduce the number of features for the next layer. At the last stage, the features

from the stage ahead of time are �attened and continued to a fully connected

(FC) layer, which is a regular NN for the classi�cation task. Some CNN models

consist of some convolutional layers and a recti�ed linear unit (ReLU) as an

activation function, which is operated before the FC layer to increase the non-

linearity. Further discussion on CNN layers is provided in Section 2.2.

• Recurrent neural network (RNN)

RNN is the NN designed to recognize the pattern in sequences of data, such as

text, handwriting, speech, or numerical time series data emanating from sensors

or other sources. The networks are called recurrent since they perform the

same computations for all elements from an input sequence. RNN architecture

can have some di�erent structures. The fundamental feature of RNN at least

consists of a standard multi-layer perceptron (MLP) with an additional time

variable so that activations can �ow in a loop. The time component allows the

output of each element to rely on all previous computations (not only the current

input, but also the input that it encounters earlier) by updating a kind of vector

state that contains information about all past elements of the sequence [60, 96].

Recursive neural network and long short term memory (LSTM) network are two

instances of RNN. The recursive neural network is a generalization of a recurrent

neural network with a tree structure with a �xed number of branches, and the

LSTM network is the extension of RNN to overcome the exploding/vanishing

gradient problem occurring due to the repeated use of the recurrent weight

matrix [60, 97].
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2.2 Convolutional Neural Network

In recent years, CNN has become the �rst choice to accomplish various challenges in

computer vision, such as recognition, classi�cation, and estimation. This is due to the

impact of the ability shown by CNN that can surpass human capacity in performing

the classi�cation [55]. Computer vision researchers mostly apply a NN to accomplish

complex problems that hinder the recognition of an object like image segmentation,

lighting, viewpoint, etc. Traditional feed-forward neural network process the images

in neurons and classify them into an output of True and False Likelihood. However,

this method cannot attain a good result for the deformed image, since the network

only knows one pattern [98]. However, a CNN can recognize an object even when

the object experiences variation translation, since CNN collects and models small

information sequentially and combines them in the deeper network [99].

The complex architecture of CNN stacks multiple and di�erent layers for classi�ca-

tion. A CNN consists of one or more convolutional layers often followed by a pooling

layer, and thereafter there are one or more fully connected layers where the biological

neuron inspired the calculation. The �rst few layers extract particular features like

edges and form the templates for edge detection. The deeper layers merge them into

simpler con�gurations and then into templates of di�erent object positions, illumina-

tion, scales, etc., which show the object of interest. The �nal layer matches an input

image with all the templates and makes a prediction [99].

Formally, each input image used in learning is divided into compact topological

portions arranged in three dimensions: width, height, depth (number of channel).

Every sub-portion put on the convolutional with the �lters (kernels) is set to look

for particular patterns [60]. The �lter moves along the input matrix, performs the

scalar product with the receptive �elds in the input matrix to generates a new matrix

(convolution matrix or feature map). Figure 2.2 describes the convolution process. A

set of �lters w is convolved across the input image x to generate the two-dimensional



CHAPTER 2. DEEP LEARNING 23

Figure 2.2: Convolution process by the �lter set to the input [100]

feature maps y can be formulated as follows:

yi,j =
n∑
k=1

n∑
l=1

wk,lxi+k−1,j+l−1 + b, (2.1)

where n is the width and height of the kernel, and b is the bias. The �lter depends

on four parameters: size, depth, stride, and zero-padding. The larger size of the �lter

will tend to overlap and create increasingly large outputs. The depth �lter refers to

the number of �lters that are used for learning to seek something di�erent from the

input. Stride is a measure of spacing neurons; Stride 1 means that the �lters move

one pixel at a time, while stride 2 makes the �lters jump two pixels at a time when

the �lter slides around. Increasing the stride will produce less overlap and reduce the

output size. Using a small stride generally works well and enables us to manage down-

sampling and scale reduction at pooling layers. The zero-padding hyperparameter is

padding the input border with zero value. It enables adjustment of the input and

output sizes to be the same and makes the spatial size of output volumes controllable.

It is very complicated to make and arrange complex kernels and show a specialized
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feature engineering technique. Moreover, the feature engineering technique has the

challenge of working well on one task but not on the other. The convolution process

can reduce the need for features engineering, which is its advantage.

The implementation of the activation function after the convolution layer can

increase the non-linearity by taking vectors and performing a certain �xed pointwise

operation on the output of the convolution layer. There are three activation functions:

sigmoid function, hyperbolic tangent, and the recti�ed linear unit (ReLU) function.

• Sigmoid function:

y = σ (x) =
1

1 + e−x
(2.2)

The sigmoid function displaces the value between 0 and 1 to distribute the

probability of the output.

• Hyperbolic tangent function:

y = 2σ (2x)− 1 (2.3)

The advantage of this function is mapping the negative values on strongly neg-

ative and mapping the zero input near zero on the tanh graph.

• ReLU function:

f (xi) = max (xj, 0) (2.4)

ReLU charts all negative values into zero without changing zero and positive

values. This makes the computation more e�cient, as ReLU does not activate

all neurons at the same time. Currently, this function is the most widely used

in CNN.

Following convolutional layers, pooling layers aggregate multiple layers into a sin-

gle layer to reduce the computational time of the following layers and enhance the

robustness of the feature related to its spatial position. A pooling layer operates by
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dividing the convolutional region into several sub-regions and subsequently selecting

a single representative value (by max-pooling, min-pooling, or average pooling). The

size of the pooling layer result is based on the spatial extent and stride with the

following calculation:

• The size of the convolutional layer result: W1 ×H1 ×D1

• Hyperparameter requirement

The spatial extent: F = k × l

The stride: S

• The calculation of the size of the pooling layer output: W2 ×H2 ×D2,

W2 =
W1−k
S

+ 1, H2 =
H1−l
S

+ 1, and D2 = D1

Thus, the features generating from the pooling layer can be obtained as follows:

yi,j = max {xi+k−1,j+l−1 ∀ 1 ≤ k ≤ n and 1 ≤ l ≤ n} (2.5)

The formula above describes the pooling process using max-pooling, with y as the

pooling results. Max-pooling is a pooling layer theory that focuses on the most re-

sponsive features, making it the most common and best choice for image classi�cation.

The pooling process with max-pooling theory is also shown in Figure 2.3. Min-pooling

is preferred as an additional step in situations that need to prevent overly speci�c clas-

si�cation. The pooling layers avoid the over�tting where the network learns the posi-

tion of features too speci�cally, so that the network no longer focuses on a particular

location of features and gains better capabilities to generalize.

The convolutional layer and pooling layer extract and learn the features using

the backpropagation method to calculate gradients during training. The method

comprised of three procedures looks as follows:
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Figure 2.3: Pooling layers process in convolutional network [101]

• Forward pass: embraces the computing process as a sum of all feature maps

(output) obtained from the convolution action, traversing through all neurons

from the �rst to the last layer.

• Calculation of loss functions from each kernel output allows setting the individ-

ual weight of each kernel as needed.

• Backward pass: refers to the computation to obtain changes in weights by cal-

culating the gradients of loss concerning output. Computing is done recursively,

applying the chain rule starting from the last layer backward to the �rst layer.

Backward and forward pass together make up one iteration.

The last hidden layer of the convolutional network is generated by the fully con-

nected (FC) layer, which is equal to the number of classes in classi�cation purpose or

amount of possibilities in the regression task. After the convolution layer rolls for the

forward pass, the output layer has a loss function that is responsible for backpropa-

gation and updating weights and biases to reduce error and loss. In a mathematical

formula, a linear transformation on the fully connected layer process is shown as

follows:

y = A · x+ b, (2.6)

where A is kernel matrix (�lter), x is the input matrix, b is the bias, and y is the

result.
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Finally, CNN also appends logistic regression, which is responsible for allocating

the probability of each class either in a binary or multi-class problem. The particular

activation function is often placed at the end of the FC layer as logistic regression,

that is a soft-max function (for the multi-class logistic regression) or sigmoid function

(for the two-class logistic regression):

S (yi) =
eyi∑k
j=1 e

yj
, (i = 1, 2, . . . , k) (2.7)

where y is output of the fully connected layer. The soft-max function produces a

discrete probability vector and can be used as a fancy normalizer.

The loss function guides the training process in neural networks to measure the

inconsistency between predicted value (S) and the actual label (L). The mean square

error (L2 Loss), cross-entropy, and mean absolute error (L1 loss) are some loss func-

tions that are commonly applied in the convolutional neural network for the classi�-

cation or regression task.

Cross-entropy:

D (S, L) = −
∑
i

Li log (Si) (2.8)

Mean square error:

MSE =
1

n

n∑
i=1

(Li − Si)2 (2.9)

Mean absolute error:

MAE =
1

n

n∑
i=1

|Li − Si| (2.10)

Figure 2.4 reveals the operation of logistic regression on the last layer of the CNN and

loss function in measuring the performance of the model, whose classi�cation output

is between 0 and 1.

The general form of the CNN is stacking of several convolutional layers followed

by a pooling layer, and repeating this pattern until the image is merged spatially to a

small size, as seen in Figure 2.5. It is also common to transition the networks to the
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Figure 2.4: Activation function and logistic regression operation at the end of convo-
lutional network in image classi�cation

FC layer with the last layer of the FC layer is a class score output. In practice, the

CNN architecture that works well using ImageNet is the most widely used. Some of

these architectures, among others, are [101]:

1. LeNet (1989): the �rst successful application of CNN that was used to read

handwritten zip code digits. LeNet architecture is composed of seven layers [70].

2. Alexnet (2012): the architecture was submitted to the 2012 ILSVRC and became

a winner. This research also became the �rst study to succeed in popularizing

CNN. Architecture AlexNet is similar to LeNet, but deeper owing to the convo-

lutional features layer stacked on top of each other. This research also utilizes

two new concepts at that time, namely max-pooling and ReLU activation, which

enhance the advantages of their architecture [55].

3. ZFNet (2013): the research won the ILSVRC 2013 by improving the AlexNet

Figure 2.5: Illustration of convolutional neural network architecture [102]
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architecture. Research tweaked the architecture hyperparameter, speci�cally by

expanding the size of middle convolutional layers and decreasing the stride and

�lter [103].

4. VGG (2014): the runner-up of ILSVRC 2014, which has contributed in demon-

strating that the network depth is an essential component for better CNN per-

formance. They arranged several network models, where the best network model

consisted of 16 Conv/FC layers. The architecture is displayed modestly in uni-

formity, which only has a 3 × 3 con�guration for the convolutional layer and

2 × 2 for the pooling layer from the beginning to the end. The lack of this ar-

chitecture makes it more expensive to evaluate and employs more memory and

parameters (140 M), with the highest number of parameters being in the �rst

fully connected layers [104].

5. GoogleNet/Inception (2014): the winner of ILSVRC 2014. This architecture

constructs the inception module, with a smaller convolution that allows reducing

the number of parameters to a mere four million. In the Inception modules, each

type of layer extracts information that is di�erent from the input. Information

obtained from the 3×3 layer will be distinguished from the information collected

from the 5×5 layer. In inception as well, dimensionality is reduced using a 1×1

convolution [105].

6. ResNet (2015): this architecture wins the ILSVRC 2015. Additional layers to the

deeper network estimate the mapping better than the shallower network. Thus,

deeper networks should show better accuracy. However, the experiment that has

been carried out cannot demonstrate this, since when the deeper network starts

converging, a degradation problem appears where accuracy saturates and then

decreases due to over�tting. This architecture attempts to deliver a solution to

this problem by displaying a residual learning framework that can facilitate the

training on deeper networks. The architecture uses 3 × 3 �lters at most and
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Figure 2.6: Depthwise separable convolution on Xception

downsamples the CNN layers with stride 2 [106].

7. Xception (2016): Xception, meaning �extreme inception� is an extension of the

Inception architecture that replaces the standard inception modules with depth-

wise separable convolutions. Depthwise separable convolutions (Figure 2.6) con-

sist of a depthwise convolution (a spatial convolution performed independently

for each channel) followed by a pointwise convolution (a 1×1 convolution across

channels). This architecture idea is based on the inception module hypothesis,

which separates cross-channel correlations and spatial correlations to simplify

and e�ciency the convolution process. As is known, in a traditional convolution,

convolutional layers seek out correlations across both space and depth. The dif-

ferences between Inception and Xception can be seen in Figure 2.7. Xception

maps the spatial correlations for each output channel separately, followed by

depthwise convolution 1 × 1 to capture cross-channel correlations without im-

plementing non-linearity. Meanwhile, Inception performs the 1× 1 convolution

�rst and applies ReLU after the two operations [107].
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Figure 2.7: Di�erences between Inception and Xception [107]

Figure 2.8: Pixel values in an image [108]

2.3 Preprocessing

An image is a set of numbers data in the range of 0 ∼ 255 displayed on a grid of

pixels, as shown in Figure 2.8. The pixel values of the color image are represented by

a group of three matrices, indicating variations of red, green, and blue, as shown in

Figure 2.9. A grayscale image has one channel, and a color image has three channels,

each re�ecting RGB information. Classi�cation on CNN also requires input images

that have been accompanied by labels for training.

There is no pledge that in the raw image, the distribution ranges of feature values

are the same. Thus, the learning rate that is used multiplicatively will lead to a dif-

ferent correction for each feature, and during the gradient descent, it will burdensome

features more than others. Preprocessing is applied to the image before entering the
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Figure 2.9: Three channels of an RGB color image

convolutional network to control this e�ect. As the �rst step for preprocessing, all

images for CNN input are converted to the uniform size and generally in square shape.

A lot of preprocessing options can be used to the input images before feeding them

to the network, such as mean and standard deviation, data normalization, dimension-

ality reduction, and even data augmentation [109]. Data normalization is signi�cant

to assure that each input parameter has a similar data distribution because it will

make convergence faster during the network training. Considerations for reducing

dimensions are often needed as well, because it makes training problems easier to

control. This is done by applying dimensionality reduction, where the RGB channels

are changed into a single grayscale channel. The augmentation of a dataset with sev-

eral versions of an image is to allow the NN to obtain exposure from various objects

to degrade the possibility of recognizing unwanted characteristics. Minor alterations

to existing image datasets will be thought of as distinct images in the NN. The varia-

tions can be gained from horizontal/vertical �ipping, rotation, rescaling, cropping, or

shifting on two-dimensional data calculations.
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2.4 Transfer Learning CNN

Transfer learning is a machine learning method where a model built for a task (initial

task) is reused as a starting point (to transfer its knowledge) on a model to complete

the second task (main task). Transfer learning is chosen as a way to enhance the

performance of the second task model when the dataset used is small. Therefore, in

most cases, a pre-trained convolutional network on a huge dataset (e.g. ImageNet,

which contains 1.2 million images with 1000 categories) is used as initialization or a

�xed feature extractor for the second task [110]. Transfer learning only works in deep

learning if the model features learned from the initial task are general. A pre-trained

convolutional network on a large dataset has learned to recognize the tri�ing shapes

and small parts from di�erent kind objects in its �rst few layers. Simply adding dense

layers at the end of the pre-trained network is very bene�cial in recognizing objects in

the new dataset, since the pre-trained network will learn what combination of these

learned features.

There are two common approaches in transfer learning, namely the develop model

approach and the pre-trained model approach [111]. First, the develop model ap-

proach reuses the model that was designed and used in the initial task for the next

(main) task. In the initial task, the model is trained from the beginning (scratch) on

an abundance of data that has a relationship with input data, output data, or con-

cepts during the mapping from input to output data against the next task. Second,

the pre-trained model approach utilizes a pre-trained model from available models for

the second task. Optionally, both approaches allow for �ne-tuning. Fine-tuning itself

can be applied by choosing one of the following three strategies: training the entire

model, training some and leaving the others frozen (weights do not change during

training), or freezing the convolutional base to keep the convolutional layers in their

original form and use their output for the classi�cation layer [112].
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Hand Posture Classi�cation of

Augmented Depth Data using A

Convolutional Neural Network

3.1 Background

Welfare technology provides support for humans in their activities, such that people

receive the amenities enhancements in daily life. In general, welfare technology is not

only intended for elderly people and people with a disease, but also disabled people

such as deaf, speech impaired, visually impaired, etc. The sign language recognition

system is a welfare technology that can be used as a communication tool for deaf

people. Communication with deaf people often requires a human interpreter because

of the limited number of people who apprehend sign language. However, employing a

human interpreter is inconvenient and expensive; therefore an automatic sign language

recognition system is needed.

Sign language recognition has long been the research object, because the hu-

man hand is a complex articulated object consisting of many connected parts and

joints [113], hence it becomes interesting to de�ne and classify hand features into as

34



CHAPTER 3. HAND POSTURE CLASSIFICATION 35

attributes and characteristics of the hand. Sign language generally consists of two

components: hand posture, which has a function to describe the particular concept

such as name, acronym, brand, etc.; and arm motion, whose purpose is to explain word

by word until its sequences form a sentence. The hand posture forms �ngerspelling

with unique and discrete hand con�gurations, while arm motion forms a movement

continuously with hand con�gurations [114]. Therefore, the development of sign lan-

guage recognition departs on two things: hand posture classi�cation and arm motion

recognition. Hand posture classi�cation is essential in sign language recognition, since

the sign is done by posturing each alphabet/number to describe the name of an object.

This process is likewise not easy, as it is faced with several challenges. The challenges

are the similarities between some signs, the variation in appearance (due to viewpoint

di�erence), and the variation in performance (due to subjects di�erence) [115]. The

examples of both variations of the hand sign are shown in Figure 3.1.

The presence of deep neural networks makes conventional hand posture classi�ca-

tion be realized by two approaches: the handcrafted feature-based and deep learning-

based approaches. The handcrafted feature-based approach entails several stages in

feature extraction, such as hand detection and hand segmentation up to feature ex-

traction itself. In some cases, employing additional devices such as gloves to makes

hand segmentation easier, however this is cumbersome for the user. In the current

case, applying the sensor, particularly the depth sensor is preferred because, in addi-

tion to facilitating the process of hand detection and hand segmentation, the depth

image of the sensor can also be utilized in the feature extraction process. Recently,

the achievement of deep learning, in particular the CNN in computer vision has made

researchers shift over from handcrafted feature-based to deep learning-based meth-

ods. This is because deep learning automatically generates and learns features at a

low computational cost.

Hand posture classi�cation using a CNN requires a large of hand posture dataset.

However, it is di�cult to obtain a large dataset involving human resources. Data aug-
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(a) sign p (b) user A (c) user A (d) user B

(e) user B (f) user C (g) user D

Figure 3.1: Hand posture variation due to viewpoint di�erence and subject di�er-
ence [115]

mentation has been employed to solve the problem of a small dataset by augmenting

data with slight variations for the training dataset. Existing data augmentation em-

ploys image processing methods such as horizontal/vertical �ipping, rotating, scaling,

and others. It should be noted that all of this data augmentation processes is merely

done on a 2D image; therefore, it cannot be applied to the depth image data. Data

augmentation using depth image data is possible by utilizing 3D operations. The

broader scope of the augmentation process using depth data will also create more

variations of the original data. Thus, this 3D data augmentation not only serves to

solve the problem on a small dataset, but also to complete the issues of appearance

and performance variations in sign language.

In the research presented in this dissertation, to realize the e�ective and e�cient

hand posture classi�cation, a hand posture classi�cation method based on the data

augmentation and the state-of-the-art CNN model is proposed. To overcome di�-

culties in collecting hand posture data and accomplish the challenge in hand posture

classi�cation, I focus on presenting data augmentation on a 3D operation to generate

the various appearance of the hand postures by utilizing depth data captured from
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the depth sensor. This augmentation method is applied to collect a large dataset with

various appearances before the dataset is fed into a CNN model. Feature extraction

and classi�cation problems are completed in the Xception model as a state-of-the-art

CNN model, since Xception has high computational e�ciency and has outperformed

other CNN models. In addition, ASL dataset for sign language recognition is used as

a benchmark of hand posture classi�cation to evaluate the e�ctiveness of the proposed

method.

3.2 Related Works

Many hand posture classi�cations have been proposed because of the importance

of sign language in assisting human life [116, 117]. Feature extraction, as the most

important part in hand posture classi�cation is optimized starting from the application

of handcrafted feature-based to the current popular approach, i.e., deep learning.

Studies on hand posture classi�cation initially use color images as input [118, 119].

Kim et al. [118] use a color-based model (mixture of Gaussian for skin color vs. single

Gaussian per background pixel) for automatically segment the hand from each image,

apply SIFT to extract the feature vector based on the local histogram of oriented im-

age gradients, and utilize a multi-layer perceptron as the classi�er to recognize ASL.

Gautam and Kaushik [119] propose a novel technique to recognize �ngerspelled ASL.

This research requires the subject to wear a wristband (see Figure 3.2) for distin-

guishing the hand from the elbow and detects the skin color by specifying threshold

ranges in the hue frame for hand detection. Point descriptors were used for feature

extraction, and Euclidean distance was employed as the classi�er.

The advancement of the depth sensor, which yields the depth data, provides dis-

tinctive convenience for the hand posture classi�cation. Depth information simpli�es

the hand detection and hand segmentation. Pugeault and Bowden [115] proposed a

system to classify �ngerspelling hand shapes in the real-time condition. As shown
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Figure 3.2: User wearing a wristband [119]

Figure 3.3: Image segmentation result [115]

in Figure 3.3, the hand is segmented by assuming that it is a connected region with

depth alterations that are less than or equal to 20 cm. Their method extracts the

hand shape feature by convolving the intensity and depth images with the Gabor �lter

and classi�es them on a multi-class random forest.

Kuznetsova et al. [49] propose the recognition of sign language using ESF descrip-

tor for feature extraction and an MLRF for classi�cation. This research seeks to solve

the problem in recognizing sign language: variance in the appearance and variations

in the performance. Therefore, after the hand detection and the hand segmentation

by thresholding depth values, the depth data are used to derive rotation, translation,

and the scale invariant feature in the descriptor.

The visual recognition paradigm changed rapidly after the appearance of the Im-

ageNet dataset, demonstrating the power of data-driven feature learning. During

the past years, CNNs have become the most e�ective architecture for performing vi-
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sual recognition. In research [120], color images of sign language are generated from

the demonstration video by sampling and concatenating screenshots as input for the

CNN. Ji et al. [120] proposed a sign language learning system using a CNN with three

convolutional layers for extracting and learning the features, and two fully connected

layers as the classi�cation method. In the research by Pigou et al. [121], CNN is

performed to recognize the signs and the gesture in sign language recognition. They

apply the CNN with three layers on depth images to extract the hand and upper body

features, then use an arti�cial neural network (ANN) on the last layer as a classi�er

to distinguish between each action or sign. They worked on ChaLearn Looking at

People 2014 (CLAP14). Moreover, Kang et al. also employed CNN for sign language

recognition on their hand posture dataset. The dataset consists of letters and num-

bers signs of the American sign language. They employ the wristband to make a gap

around wrist and utilize CNN with an architecture similar to Ca�enet.

Data augmentation has been �tted to increase classi�cation performance. Si-

monyan et al. utilize color shifting, �ipping, and scale jittering for augmentation; He

et al. use resize/scaling, color augmentation, and �ipping; and Aquino et al. show

the e�ectiveness of online data augmentation with and without balancing the training

set [104, 106, 122]. There are two approaches of data augmentation on CNN; the

�rst is to generate augmented data before training the classi�er, whereas the second

approach attempts to learn augmentation through a prepended NN [123]. However,

both approaches that have been performed are limited to 2D operations. Takimoto et

al. [113] propose a robust hand posture recognition method for posture alteration by

rotating the hand depth information gained from the depth sensor in 3D directions.

This method is the foundation for the proposed data augmentation method to com-

pose more hand postures. Each output generated from the calculation is stored �rst

to become the input for the CNN model.
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Figure 3.4: Overview of the proposed hand posture classi�cation on training

3.3 Proposed Method

CNN requires a su�ciently large dataset to attain high performance in recognition

tasks. However, it is di�cult to construct a large amount of hand posture image in a

dataset moreover with di�erent appearances, since taking the image of hand posture

involves human resources. Our research aims to virtually generate a large hand posture

dataset, by applying data augmentation methods for a manually collected small hand

depth dataset. In addition, su�cient hand posture classi�cation is achieved by using

the generated large dataset and Xception which is state-of-the-art of CNN.

The overview of the proposed hand posture classi�cation is shown in Figure 3.4.

At the initial step, �ngerspelling indicated by a subject is captured using an RGB-D

sensor as input data for the hand posture classi�cation. In many cases, the body of

the subject is included in the entire captured image. Therefore, only the hand region

is detected and segmented for initial preprocessing in our method. To construct a

large hand posture dataset, the proposed data augmentation method is applied to

speci�ed for hand depth data to the segmented hand image. Then, the proposed

CNN for classi�cation of hand postures is based on the Xception architecture. In the

training phase, CNN is e�ciently trained using many generated hand images.

I utilize the dataset provided by Kang, which consists of two kinds of hand posture

data � JPEG data and raw data [124]. In this case, the raw data is used for the

proposed method. The raw data is captured using a Senz3D RGB-D camera, which

is able to capture depth images with 320 × 240 pixels resolution. The dataset has

31 sign classes of hand depth data � 24 alpha and seven numeric, which are collected

from �ve di�erent subjects. The number of images for each sign is di�erent; overall,
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Figure 3.5: Examples signs with depth images of Kang's dataset

the total number of images is 33,739. The appearance of 31 signs on depth data is

shown in Figure 3.5. Since the proopsed method focus merely on the classi�cation of

hand postures, the identical sign posture of the alpha sign and numeric sign, `V' � `2'

and `W' � `6', are only used to visualize the alpha sign. In addition, alpha signs that

require a motion, such as `J' and `Z', are excluded from the dataset.

3.3.1 Hand Segmentation

Hand segmentation is utilized as an important preprocessing step in feature extrac-

tion on both handcrafted feature and deep learning approaches. Hand segmentation

consists of the detection of the hand position from a captured image, and the separa-

tion of only detected hand region from the background. Hand depth data information

resulting from hand segmentation is then utilized in the data augmentation process.

An instance of captured raw data is shown in Figure 3.6(a). The gray level of each

pixel in this raw data means the distance from an RGB-D sensor. Whitish pixels

depict distances further from the sensor. An utterly black pixel indicates that the

distance could not be measured. First, only a hand region is extracted from the raw

image as preprocessing of hand posture classi�cation, since the captured raw image

includes not only a hand, but also a body and a background.
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Figure 3.6: The result of hand region segmentation method on raw data

The subject's hand is considerably closer to the RGB-D sensor than the body

in this dataset. In addition, there are places where the distance cannot be mea-

sured around the hand region, since the hand is located near the sensor. Therefore,

hand segmentation is achieved by applying thresholding, labeling, and morphological

operation to the raw image on the basis of these preconditions. Thresholding is im-

plemented to detect the Subject hand and localize them, so noise around the hand

area may occur, as shown in Figure 3.6(b). The application of the labeling algorithm

and morphological operation, such as dilation and erosion, reduce the noise around

the hand region. A rectangle region containing the extracted hand region is stored as

a monochrome image. Figure 3.6(c) shows the extracted hand region result obtained

from all processes.

3.3.2 Data Augmentation

Even if the same sign is formed by the subject's hand, the appearance of a formed

hand sign is di�erent depending on the time and situation, since the human hand is a

complex articulated object consisting of many connected parts and joints. Individual

di�erences such as hand size or thickness also a�ect the diversity of appearance in

hand signs. Furthermore, when a subject performs the sign to a camera, there is

the possibility that the hand does not precisely direct to the front of the camera.

Figure 3.1 shows various appearances of the same posture demonstrated by di�erent

subject. Therefore, to improve the classi�cation accuracy of CNNs, a large hand

posture dataset that includes individual variations and hand directions is required.
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Original
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Figure 3.7: Possible transformation imposed on the image of sign `A'

Data augmentation is the technique utilized to arti�cially expand the number of

data and variation appearances. This is done by modifying the original data in the

dataset with one or more transformations [125]. The transformations are performed

using a range of 2D operations speci�cally on the 2D image such as �ip, rotate, shifts,

and others. In particular on CNN, the data augmentation purpose is to extend the

training dataset with new plausible examples generated from the transformation. As

an example, in Figure 3.7, horizontal �ipping can be applied to the following �nger-

spelling, since there is a possibility �ngerspelling done by left-handed people. However,

it makes no sense to do vertical �ipping on the image due to the fact �ngerspelling

posturing or �ngerspelling image capturing is not possible in this appearance. Thus,

transformation must be carefully chosen.

The presence of depth data allowed us to gain abundant augmentation results by

harnessing the depth information and using the 3D transformation. The proposed

data augmentation took the hand depth data results from the data segmentation and

processed them using 3D rotation transformation rather than 2D rotation to virtually

generate more hand depth data. The large of the angle chosen for rotation is not

very wide, considering the impossibility of its appearance based on the fact and the

avoidance of similar appearance to the result of vertical �ipping. The amount of new

data appearances in the dataset depends on the length and width of the rotation and
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the direction of rotation.

In this research, a 3D voxel model of the hand surface is constructed from a

depth image. First, the extracted hand region is represented by a 3D voxel model.

Voxelization of the proposed 3D voxel model is described by

V oxel_Hand (x, y, z) ∈ {0, 1} (x, y, z = 1, 2, . . . , N) , (3.1)

where the parameter N depicts the width of the proposed model, and each voxel rep-

resents 1 mm in real space; x, y, and z are the width, height, and depth, respectively.

In the 3D voxel model, hand shape is represented by the voxel with 1, and voxels

other than the hand region are represented by zero. In the voxelization to convert

a pixel to the voxel, calibration is necessary due to the di�erent units of height and

width for pixels (in pixel) and voxel (in mm). For this calibration, the characteristics

of the depth sensor were analyzed as a preliminary experiment.

The width and the height of hand size changed after unit transformation; therefore

nearest neighbor interpolation is applied to form a new hand depth information. The

proposed voxelization is performed on the basis of the centroid of the hand region. The

center of the voxel model, V oxel_Hand(N/2, N/2, N/2), is de�ned as the centroid of

the hand region. Each hand region is modeled by

V oxel_Hand

(
N

2
+ i,

N

2
+ j,

N

2
+ (z − zc)

)
∈ {0, 1} , (3.2)

where i, j, z mean distance between the centroid of the hand and the target hand

region in real space; and zc means the distance between the sensor and the centroid

of the hand.

The human hand is able to rotate in three directions�yaw, pitch, and roll [121], as

shown in Figure 3.8. A rotation model for hand posture recognition with the center
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Figure 3.8: Direction of hand rotation

point (0, 0, 0) is described by


x′

y′

z′

 = RφRθRψ


x

y

z

 . (3.3)

Therefore, a rotation model with the centroid (xc, yc, zc) as a center point is


x′

y′

z′

 = RφRθRψ


x− xc

y − yc

z − zc

 , (3.4)

where x, y, and z are the coordinates of a hand voxel; and x′, y′, and z′ are the

coordinates in the voxel transformed by rotation matrices. The hand voxel is rotated

by making the centroid of the hand the rotation center. By applying this rotation

model to the 3D voxel model, virtual hand images that rotate in various directions

are created from one frontal hand image.

To create the 2D depth image for input to the CNN, the virtually rotated shape

of the hand in the 3D voxel model V oxel_Hand(x, y, z) is mapped onto the xy plane.

In this step, the distance of each xy coordinate in the voxel model nearest to the
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(a) (b) (c) (d)

Figure 3.9: Examples of rotation results. (a) Original image, (b) result rotated by
-15◦ in the pitch direction, (c) result rotated by -15◦ in the yaw direction, and (d)
result rotated by -15◦ in the roll direction

sensor is set to each pixel in the 2D pixel model Image_Hand(x, y). Thus, the 2D

pixel model Image_Hand has distance information of the surface of the rotated hand

shape. Moreover, to normalize the distance information of the 2D pixel model, the

distance of each pixel is normalized by

Image_Hand (x, y) = Image_Hand (x, y)− th, (3.5)

th = min {Image_Hand (x, y)} (x, y = 1, 2, · · · , N) . (3.6)

The virtually rotated results are stored as monochrome images as well and the

examples are given in Figure 3.9. The most important point is that the depth data of

the hand region obtained from the RGB-D sensor is merely the hand surface. When

the voxel model is rotated with a large angle of rotation, some holes appear on the

rotated image due to the in�uence of the hand thickness; Figure 3.10(b) shows the

result of rotation if the thickness is not considered in the voxel model. The original

depth image, Figure 3.10(a), is rotated �15◦ on the yaw. In Figure 3.10(b), there are

some holes without depth information because the proposed hand rotation method

only rotates voxels on the surface of the hand.

To address this problem, the virtual thickness to the hand surface in the voxel

model is append before the rotation. If the surface of the hand region exists in
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(a) (b) (c)

Figure 3.10: Example of hand augmentation with/without specifying the thickness.
(a) Original image, (b) augmented depth images without specifying the thickness, and
(c) augmented depth image with speci�cation of the thickness

V oxel_Hand(x, y, z), that is, V oxel_Hand(x, y, z) = 1 and the virtual thickness is

added by

V oxel_Handth (x, y, z + i) = 1 (1 ≤ i ≤ α) , (3.7)

where V oxel_Handth is the voxel model with virtual thickness, and α is the parameter

of the thickness. Although the thickness of the hand depends on the hand shape and

the part of the hand, a uniform thickness is added to each surface in order to realize

a simple thickness model. In this research, α is set to 11. This parameter is de�ned

based on the average thickness of the Japanese little �nger [126]. An example of the

rotated depth image of Figure 3.10(a) is shown in Figure 3.10(c).

The new images created by this data augmentation increase the number of data

in the dataset and provide more informative data by the variation appearances of

original data. To obtain similar data manually would be certainly very exhausting.

Moreover, regarding the application of CNN for classi�cation, these results can surely

make the CNN model more skillful by increasing the ability of the models to generalize

what they have learned to the new images.

3.3.3 Hand Posture Classi�cation

The CNN model based on deep learning is used for feature extraction and classi�cation

of the hand shape. Our CNN architecture is based on the Xception model, which
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Table 3.1: Comparison of classi�cation accuracy of some CNNs on ImageNet dataset

Top-1 accuracy Top-5 accuracy

VGG-16 0.715 0.901
ResNet-152 0.770 0.933
Inception V3 0.782 0.941
Xception 0.790 0.945

has replaced the Inception module with depthwise separable convolution (a spatial

convolution performed independently for each channel) and is followed by a pointwise

convolution (a 1 × 1 convolution across channels). In a paper written by Chollet [107],

the comparison of classi�cation results from several CNN architecture are provided in

Table 3.1.

The accuracy value in Table 3.1 is obtained in the experiment to compare Xception

and Inception-V3 as benchmark using the same dataset and hyperparameters setting,

while the accuracy value of VGG-16 and ResNet-152 is included as a note. The

experiment was done by utilizing the ImageNet dataset, which is the image database

organized in a hierarchical system to satisfy the data needs in the computer vision

problem. Each node in the hierarchy of ImageNet is composed of a hundred even

thousand images with quality-controlled and human-annotated. ImageNet dataset

besides being widely used to benchmarking state-of-the-art model, it is also used

to training resource, introducing new semantic relations for visual modeling, and

researching human vision. The same exact hyperparameters are applied on both

model such as optimizer is SGD, momentum is 0.9, initial learning rate is 0.045, and

decay of rate is 0.94 every two epochs. On the contrary, Top-1 accuracy in the table

depicts the conventional accuracy when the top class (with the highest probability) is

same with target label and Top-5 accuracy means the target label (expected answer)

is one of the �ve highest probability answers.

The Xception showed higher classi�cation accuracy than previous architectures

with the smaller parameter amount and training speed compared to Inception, as
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Table 3.2: Comparison of size and training speed between Inception and Xception

Parameter count Steps/second

Inception V3 23,626,728 31
Xception 22,855,952 28

Figure 3.11: Architecture of the Xception model

shown in Table 3.2.

The original architecture of the Xception model is shown in Figure 3.11 [107].

This model accepts an RGB color image of 299 × 299 pixels as the input image. The

Xception model has 36 convolutional layers for feature extraction, which are framed

in 14 modules. Each module has linear residual connections around them, except for

the �rst and last modules. All the convolution and separable convolution in the model

are followed by batch normalization, however they were not included in the diagram.

Furthermore, all the separable convolution layers employed a depth multiplier of one

(no depth expansion). The model consists of three �ows, entry �ow, middle �ow, and

exit �ow. First, data enters the entry �ow, then passes the middle �ow repeated eight

times, and �nally, exits through the exit �ow. In the exit �ow, although Xception has

the optionally fully connected layer and logistic regression, these layers are replaced

to a global average pooling (GAP) layer.
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GAP is an ordinary average pooling layer with a pool size equal to the size of the

input. This method outputs one feature map for each appropriate category of the

classi�cation task in the last convolutional layer and directly feeds it to the soft-max

layer. The soft-max function transforms the output of each unit to a value between 0

and 1. The output of the soft-max function is equivalent to a categorical probability

distribution; it gives the probability that any of the classes are true. The soft-max

activation function is given by the following equation:

f (xi) =
exi∑k
j=0 e

xj
, (i = 0, 1, 2, . . . , k) , (3.8)

where x is the vector input to the output layer; and i is the index of the output units.

A pre-trained network is a popular transfer learning approach to improve the model

performance on a second task by transferring or �ne-tuning the knowledge using the

weights by continuing the backpropagation [127]. Generally, the ImageNet dataset is

used for pre-training networks in CNNs.

The weights from the pre-trained network on ImageNet are relevant and useful for

most classi�cation tasks, because they can capture global features such as curves and

edges in the early layers. Therefore, the weight pre-trained by ImageNet is used as

the initial weights of our CNN.

3.4 Experimental Setup and Results of Hand Pos-

ture Classi�cation

3.4.1 Experimental Setup

To show the e�ectiveness of the proposed hand posture classi�cation model and data

augmentation method, classi�cation accuracies using �ve training datasets created

from Kang's dataset are compared. As mentioned in Sec. 3.3, Kang's dataset includes
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31 sign classes of hand depth data � 24 alpha and seven numeric. The dataset is

collected from �ve subjects, and the number of images in each class is 200 or more.

Data augmentation generates more images of hand posture that can be used as

input data for classi�cation on CNN. In this data augmentation, the hand voxel

rotated in all combination from -15◦ to +15◦ with a 5◦ interval in each direction. As

a result, 343 images (including one original image from 0◦�0◦�0◦ combination of angle

rotation) in various rotation directions are virtually generated from just a single hand

image. As preprocessing for classi�cation on Xception, all data resulting from data

augmentation is resized according to the input size of the Xception model, which is

299 × 299 pixel and then interpolated with the nearest neighbor interpolation method.

The details of the �ve datasets that are used for this experiment are shown in

Table 3.3. First, three datasets (Dataset A, B, and C) containing solely original hand

data are created. The original hand data means that the proposed data augmentation

is not applied to the hand data that has been segmented from raw data. The di�erence

between these datasets is the number of images for each class. They consist of 2, 20,

and 200 images respectively for each sign of one subject. In contrast, by applying the

proposed data augmentation with/without adding thickness to Dataset A (containing

only 2 original images), two datasets (Dataset D and E.) are created.

I separate each dataset into training and test data. In each dataset, the four

subject's images are used as training data, and the remaining subject images are

used as test data. For appropriate assessment, although a di�erent amount of data,

depicted in Table 3.3, are used as training data, 6,200 images from one subject in

Dataset C are used as test data. For example, the �rst accuracy from the classi�cation

result in Table 3.4 is obtained using images from Subject 2, 3, 4 and 5 from the

Dataset A as training data and utilizing images from Subject 1 on the Dataset C

as testing data. The second classi�cation accuracy was obtained by applying images

from Subject 1, 3, 4, and 5 on Dataset A as training data and images from Subject 2

on Dataset C as testing data.
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Table 3.3: Details of datasets for experiments

Number of Number of
Total Number original images augmented images

Dataset ID number of for each class for each class
of images subjects captured from resulting from

one subject one subject

Dataset A

Only original 310 5 2 -
hand data
Dataset B

Only original 3,100 5 20 -
hand data
Dataset C

Only original 31,000 5 200 -
hand data
Dataset D

106,330 5 2 684

Original hand
data & virtually
generated data
without adding
hand thickness
Dataset E

106,330 5 2 684

Original hand
data & virtually
generated data
with adding
hand thickness

The adaptive gradient (AdaGrad) algorithm is used as an optimizer. The learning

rate is set to 0.0001, the batch size is 20, and the number of epoch is 50.

3.4.2 Results and Discussions

The results of the accuracy for each test subject are shown in Table 3.4. In this

table, test subject ID speci�es the subject used for testing data. From the results

of Dataset A, B, and C, I con�rmed the importance of using a large amount of

training data for classi�cation using a CNN, because classi�cation accuracy using a

large number of images for training improved.
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Table 3.4: Results of the proposed method for classi�cation of ASL dataset

Number of Test subject
Dataset ID training images ID (of Accuracy (%) Average (%)

for one subject dataset C)

1 58.96
2 62.09

Dataset A 62 3 45.16 50.04
4 40.24
5 43.75
1 85.39
2 89.12

Dataset B 620 3 73.64 78.18
4 68.53
5 74.20
1 95.15
2 91.85

Dataset C 6,200 3 91.74 89.39
4 86.16
5 82.06
1 87.98
2 82.15

Dataset D 21,266 3 70.73 79.18
4 79.97
5 75.06
1 88.00
2 86.18

Dataset E 21,266 3 74.21 81.44
4 80.00
5 78.83

In contrast, Dataset D and E are constructed by applying the proposed data

augmentation method to Dataset A. By comparing the accuracy between Datasets

A, D, and E, the classi�cation accuracy of Datasets D and E improved signi�cantly.

This improvement has occurred because the proposed data augmentation makes the

appearance of hand signs more diverse. In addition, the accuracy of Dataset E is

higher than that of Dataset D. The classi�cation results of data augmentation by

specifying the thickness yielded higher accuracy than without speci�cation of the

thickness, because virtually speci�ed hand thickness can overcome the noise generated
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by 3D rotation of the hand surface. Although the accuracy of Dataset C is best in

all results, construction of this large dataset requires a lot of time and e�ort. The

most important point is that Dataset D and E based on the proposed augmentation

method achieved highly accurate classi�cation using just two original images.

Two confusion matrices of subject 3 in Dataset B and E are shown in Figure 3.12.

Using the proposed data augmentation method, several misclassi�cations are e�-

ciently reduced in Dataset E. The e�ect is noticeable in sign classes `3', `O', and `Y'.

As an example, Figure 3.13 represents the sign posture `3' included in the test dataset

and Dataset B and E. The hand posture `3' in the test data has various appearances.

In contrast, compared with Dataset E, which includes various appearances of sign pos-

ture `3' by using the proposed data augmentation and adding thickness, Dataset B

has a less diverse appearance. Therefore, various posture appearances generated by

the proposed method are su�cient to accurately classify a hand posture, which is a

complex articulated object consisting of many connected parts and joints.

The general cause of misclassi�cation is the similarity between the sign postures.

The misclassi�cation can be seen in Figure 3.14, which shows the similarity of sign

posture `D' and `1' on each Dataset B and E. Augmentation also shows a small impact

in the misclassi�cation that occurred. Misclassi�cation in some classes in Dataset B

is lower than for Dataset E. Figure 3.14 also shows that the proposed method forcibly

generates more various appearances of sign `D' in Dataset E compare with Dataset B.

However, the appearance of sign posture `D' in the original dataset (test data) is not

diverse. It makes the test data of sign `D' more recognizable as a sign `1' than as a

sign `D'. Although some misclassi�cations occur by the e�ect of data augmentation,

overall, this can improve accuracy. I con�rmed the e�ectiveness of the proposed

method for classi�cation of hand postures captured from an RGB-D sensor.

The e�ectiveness of the CNN model with Xception architecture and the �ne-tuning

technique for hand posture classi�cation are also showed. This research using the

Xception model (Dataset C) showed better performance around 3.9% compared with
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Table 3.5: Comparison of results in the classi�cation accuracy based on the method

Method
Number of training

Average (%)
images for one subject

Dataset C

Proposed method
6,200 89.39

(Xception)
Previous research

6,200 85.49
(similar to Ca�eNet)

the previous research using a similar architecture with Ca�eNet by Kang, as shown in

Table 3.5. In both studies, the same number of datasets (31,000 images) were trained,

and both had the same ratio of separation for training and test. For training and

classi�cation of the posture of the hand for the CNN, the same �ne-tuning technique

was applied in both studies. As a result, I con�rmed the e�ectiveness of the proposed

method utilizing the Xception model for hand posture classi�cation.

3.5 Conclusions

In this study, a method for e�ective hand posture classi�cation using data augmen-

tation and a state-of-the-art CNN model was proposed. The proposed augmentation

method using 3D rotation on the depth data can be applied to increase the number

of image datasets, because of the di�culty of collecting hand datasets from several

subjects and showing the e�cacy by increasing the classi�cation accuracy for the

same original images in a CNN. This research also demonstrated higher performance

for classi�cation using the Xception model. The availability of a su�cient number of

datasets and a better classi�cation method can accelerate the development of a sign

language recognition system as a communication interpreter using deep learning.
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(a) Confusion matrix of Dataset B

(b) Confusion matrix of Dataset E

Figure 3.12: Comparison of confusion matrices
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Figure 3.13: Appearance of the `3' sign posture in the dataset

Figure 3.14: Appearance of `D' and `1' sign postures in the dataset



Chapter 4

Food Constituent Estimation for

Lifestyle Disease Prevention by

Multi-task CNN

4.1 Background

Progress in distribution systems and food production technology in recent years en-

abled people to obtain their preferred food at any time quickly. However, consumption

of retort food and opportunities for dining out are increasing as more people lead soli-

tary lives and the dual income ratio increases, along with the expansion of the diversity

of lifestyle habits in developed countries. Maintaining such eating habits increases the

risk of lifestyle diseases owing to biased nutritional balance. Lifestyle-related diseases

include hypertension, dyslipidemia, diabetes, and others. These diseases can progress

undiagnosed to damage the brain, heart, blood, vessels, etc., as they have few subjec-

tive symptoms.

One way to reduce the risk due to lifestyle-disease is measuring the amount of

food intake consumed. Calculation of the amount of calories is frequently used in the

diet, as calories are a very in�uential factor in obesity, which is one of the leading

58
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causes of numerous diseases, such as heart disease, hypertension, and diabetes [128].

The accurate estimation of the calorie content of food is e�ective to prevent obesity.

In similar condition, salt is likewise an essential nutrient in the human body even

though it is only needed in relatively small quantities. Salt does not a�ect the number

of calories; however, health risks such as high blood pressure can increase with high

salinity intake.

As a traditional approach, people proceed to diet by manually recording and count-

ing the intake of calories from the food that enter the body. However, that is tedious

and ine�cient, sometimes even requires relying on memory, and less e�ective owing

to the lack of nutritional information [128, 129]. The growing need for more speci�c

and accurate diet assessment methods gave rise to e�orts to improve these methods,

including integrating them with technology [130]. Further, the number of scattered

food images on the internet supports interest in the presence of automatic food recog-

nition systems using images. Hence, several automatic food recognition systems using

food images have been developed to record everyday foods with the aim of increas-

ing the extent to which people are conscious of developing eating habits for good

health [131, 132, 133, 134].

The advancement and portability of mobile phones make mobile applications as an

optional device of the practical food recognition system. These applications are espe-

cially useful for dietary assessment and planning. Automatic food image recognition

methods have been widely proposed to enhance the capability of an application. Au-

tomatic food image classi�cation could potentially alleviate the process of food-intake

estimation and dietary assessment. In most of the cases, we can easily estimate food

materials and ingredients based on the food category classi�ed from the food image

captured by a mobile device. However, the estimated values are only standard guide-

lines for each category, because food materials and ingredients are not unique to the

captured food. In other words, the outputs would be standard values according to

the category classi�cation result.
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It is possible to roughly estimate how high the calorie content of the food in an

image based on prior knowledge, although humans would �nd it di�cult to estimate

the precise calorie content from a food image. Previous studies proposed methods

capable of directly estimating the calorie content of food from an image in an attempt

to implement this human ability on a mobile device. Additionally, it is clear that

estimating the salinity of food from an image is a problem that is a more di�cult

for humans, and to date no studies have focused on the automatic estimation of food

salinity from food image.

In this research, an automatic method for food ingredient estimation from a food

image using a multi-task CNN is proposed. Intending to achieve lifestyle disease

prevention, this research focuses on the recognition of the food category and the esti-

mation of calories and salinity. CNN based on deep learning has been demonstrated

to achieve excellent results for image classi�cation and object detection. The e�ec-

tive estimation of calories and salinity using multi-task learning with food category

classi�cation is realized by de�ning both calorie and salinity estimation as a regres-

sion problem. The underlying assumption for multi-task learning algorithms is that

di�erent tasks are related to each other [135]. Although a previous study reported

that a food category is closely related to its calorie content, research to clarify the

relationship between the food category and salinity has not yet been reported. In this

research, the relationship between the food category and salinity is also experimentally

shown by using multi-task CNN.

The Xception model [107], which has achieved a high recognition rate in image

classi�cation tasks using ImageNet, is used as the basis for the proposed architecture.

In addiution, new food image dataset is constructed by using public images from

several recipe-gathering websites because there is no large food image dataset with

detail information on calorie and salinity. Here, CNN is considered to require a large

number of training images to achieve comparable or superior performance to the

conventional local-feature-based methods. The two-stage transfer learning using a
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large number of food image databases for food category classi�cation is proposed

because it is di�cult to collect many food images whose calorie content and salinity

are known.

4.2 Related Works

Chronic diseases caused by obesity requires a proper diet in an e�ort of its prevention.

Often, people who diet should note their daily meals regularly, both for self-monitoring

and to acquire useful statistics for dietitians. The recording of the calorie intake

developed from paper-based to the use of information and communication technology

such as the website [136, 137], computer application [138], and subsequently inspired

the presence of a food diary application for mobile phones with the convenience and

practicality of recording as a goal [139, 140]. Manually journaling is quite tiring, so

image processing is o�ered to facilitate the assessment of the amount of food nutrition

through the website [133] and mobile applications that are more preferred [141].

Image processing is utilized in food image recognition that enables nutrient es-

timation and health-care analysis corresponding to people's eating habits. There-

fore, food image recognition methods and food image databases have been widely

developed. Food recognition methods likewise can be viewed from two feature ex-

traction approaches that are: the handcrafted feature-based and deep learning-based

approaches.

First, I describe the handcrafted feature-based approach. Many researchers have

attempted to solve the problem of food image classi�cation by using simple low-

level feature extraction and coding methods. Yang et al. proposed a method to

analyze the ingredient relations in the food image by computing pairwise statistics

between the local features [142]. First for feature extraction is to obtain pixel-wise

soft labels for each pixel in the images, the probability with which a pixel belongs

to each food category is calculated using the semantic texton forests [143]. The soft-



CHAPTER 4. FOOD CONSTITUENT ESTIMATION 62

Figure 4.1: Four feature pairwise. (a) Information table of pairwise feature, (b) (c)
(d) (e) are illustrations of the pairwise feature [142]

labels picture is utilized to create the histogram of global ingredient representation,

however the histogram cannot capture the spatial relationship between ingredient

for distinguishing one food from another. The pairwise feature is used to capture

spatial relationship and is employed to extract statistics of pairwise local features, to

form a multi-dimensional histogram. Figure 4.1 represents more information about

the pairwise feature. Finally, the food image is classi�ed by applying the obtained

histogram to a multi-class SVM using a X2 kernel.

Kong and Tan proposed �DietCam�, which is an automatic camera-phoned-based

multi-view food classi�ers as part of a food intake assessment system [144]. DietCam

detects food ingredients by using a deformable part-based model and a texture veri-

�cation model. A food category is classi�ed by using the detected ingredients and a

multi-view kernel SVM. He et al. proposed an image segmentation and classi�cation
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Figure 4.2: Food detection and food-balance estimation method using the global
feature [146]

method to detect the food regions in an image, and to classify the food category [145].

They extracted the color with four color descriptors and the texture with three tex-

ture descriptors for food classi�cation. In addition, this method estimated the weight

of food to extract the nutrient content from a food image using a shape template

for foods with regular shapes and area-based weight estimation for foods with irreg-

ular shapes. Aizawa et al. developed a food detection and food-balance estimation

method [146]. First, food-image detection categorizes the image into �food� or �non-

food� by employing supervised learning based on multiple image features and SVM,

then, food-balance estimation is used to estimate the food balance of the meal shown

in each photograph by using the global color, circle, BoF, and block features, which

are shown in Figure 4.2. All features merged into a feature vector and food-balance

each food category were estimated by classifying the vector into one or more classes

by AdaBoost. They proposed improving the performance with personal likelihood.

Anthimopoulos et al. o�er a BoF-based system for food image classi�cation. First,

a visual dictionary of 10,000 visual words is created from dense local features based

on SIFT features on the HSV color space [147]. The results of food image recognition

are shown by comparing three machine learning-based classi�ers such as SVM, ANN,

and random forests (RFs).

Considering all of the previously described methods, it seems the best approach

is to use a complex combination of a large number of image features. Some food
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types have a high intra-class and low inter-class variance, since foods are typically de-

formable objects. Even though researchers have addressed the problem of developing

the food feature, these characteristics still lead to the low classi�cation accuracy on

handcrafted feature-based approaches.

During the past years, CNN has become the most e�ective architecture to perform

visual recognition. The ability of CNN to extract the feature automatically is expected

to alleviate the feature extraction and gain better results on food recognition. Hence,

many studies using the deep learning-based approach for food recognition have been

reported [148, 149, 150, 151, 152, 153]. These researchers demonstrated that it is

possible to classify with higher precision than of the existing handcrafted feature-based

approach by conducting experiments using food image datasets. Myers et al. reported

a deep learning-based approach to recognize the food item and predict the nutritional

content of the food [154]. They propose the Im2Calories system for food recognition,

which made extensive use of CNN, and utilized the architecture of GoogleNet [105],

�ne-tuning the pre-trained model on Food101 [155]. Pouladzadeh et al. proposed a

method to classify the food and to estimate the calories contained in images of food

taken by the user [156]. These works integrate with the mobile calorie measurement

application and require reference information to estimate the quantity of food on the

plate.

Multi-task learning has been used successfully in several applications of machine

learning, including computer vision [157]. Multi-task learning on CNN aims to im-

prove generalization performance by completing multiple related tasks at the same

time. Abdulnabi et al. proposed a joint multi-task learning algorithm to e�ectively

estimate several image attributes using CNN [135]. In this multi-task CNN, e�ective

learning of CNN is achieved because attributes in the same group are prompted to

share more knowledge, whereas attributes in di�erent groups generally compete with

each other. By using multi-task CNN, Chen and Ngo achieved food categorization by

recognizing the ingredients composition from food images [158]. Their paper reported
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Figure 4.3: Four di�erent architectures of deep CNN for multi-task learning of food
category and ingredient recognition [158]

Figure 4.4: Multi-task CNN based on VGG-16 architecture

that simultaneous estimation boosted the estimation performance in both tasks, in-

gredient recognition and food categorization. They considered four architectures of

deep CNN as well, which shown in Figure 4.3, and whose best performance is depicted

by Arch-D.

Ege and Yanai proposed a simultaneous estimation method of food category and

calories with multi-task CNN [159]. This research implemented multi-task CNN based

on VGG16, and multi-task indicated from the seventh layer of the fully connected

layer, which branches to each task. The model of multi-task CNN is expressed in

Figure 4.4. Although the accuracies of both tasks were improved compared with

single-task CNN, the improvement is slight due to the number of datasets for training

the multi-task CNN is insu�cient.

Although many studies on category identi�cation and calorie estimation have been

published, the estimation of salinity from a food image has not yet been reported. In

addition, a large training dataset is required to derive the performance of multi-task
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Figure 4.5: Architecture of proposed multi-task CNN

CNN even though it is e�ective to use multi-task CNN with category classi�cation

to estimate food ingredients. However, it is extremely costly to collect ingredient-

annotated data of food images.

4.3 Proposed Method

This research aim is to more accurately estimate the food category and ingredients

from a food image by a multi-task CNN. Excess calorie and salt intake pose strong

health risks such as heart disease, hypertension, and high blood pressure. However, no

research has reported the salinity estimation. This led us to focus on the estimation

of the calorie content and salinity of food.

The architecture of the multi-task CNN is shown in Figure 4.5. The proposed

architecture is based on the Xception model with the applied hard parameter sharing

concept. After the feature extraction by Xception, the model branches into three

tasks: food category classi�cation, calorie estimation, and salinity estimation. Each

task arranged by the global average pooling layer, the fully connected layer, and the

output layer, which are denoted as GAP, FC, and Out in Figure 4.5.

A food ingredient-annotated food image dataset including both calorie content

and salinity does not yet exist because other researchers have not focused on salinity

estimation. In this study, a food image dataset annotated by calories and salin-
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ity is constructed. In contrast, e�ective and e�cient training using multi-task CNN

is achieved by continuously �ne-tuning the multi-task CNN by using a small-scale

ingredient-annotated dataset and a middle-scale dataset with only the categories an-

notated, as a two-stage �ne-tuning procedure.

4.3.1 Dataset Construction

A large food image dataset annotated by calories and salinity is not available to date.

A large number of food images annotated with both types of information are collected

from six commercial cooking recipe sites on the web [160, 161, 162, 163, 164, 165].

The recipe information published on these sites was provided by experts such as cooks

and cooking researchers. Although the calorie and the salinity information provided

on these recipe sites are for one person, the amounts speci�ed for some food images

are for multiple people. These food images for multiple people are excluded from the

dataset since the focus is on estimating the calorie and salinity content from a food

image for one person.

As a category, the proposed method focus on the representative 14 categories

included in the UEC Food-100 [166], which are shown in Figure 4.6. The UEC Food-

100 contains food images of 100 kinds of Japanese foods. The 14 selected categories

are included in the food category considered in the research by Ege and Yanai [159].

Here, the low-resolution images or those with multiple category labels from the

collected images are excluded. All images were resized to 299 × 299 pixels. As a

result of the aforementioned processing, a total of 3,051 images were collected on

14 categories. Details amount of the food image dataset together with the mean

and standard deviation of their calorie and salinity are shown in Table 4.1. The

distribution of calorie and salinity of the entire dataset is shown in Figure 4.7 and

Figure 4.8 .

I collected another dataset, a category-annotated food images dataset from the

Rakuten recipe dataset, which is part of the Rakuten dataset [167]. This dataset has
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(a) Curry and
rice

(b) Fried rice (c) Chow mein (d) Spaghetti (e) Gratin

(f) Miso soup (g) Stew (h) Beef and
potato stew

(i) Hamburg
steak

(j) Cold tofu

(k) Scattered
sushi

(l) Omurice (m) Potato
salad

(n) Mixed rice

Figure 4.6: Representations of food images for each collected category

14 categories, which is the same as the dataset for the main task. The collected image

limit for each category is 3,000. Here, low-resolution images or those with multiple

category labels from the collected images are excluded. All images were resized to

299 × 299 pixels. As a result of the above processing, a total of 28,359 images

were collected in 14 categories. Note that calorie and salinity are not annotated in

these images dataset. The number of collected images for each category is shown in

Table 4.2.

4.3.2 Architecture of Multi-task CNN

The proposed architecture, which is shown in Figure 4.5, is based on the Xception

model. Xception is a CNN architecture inspired by Inception. This architecture

displayed a higher e�ciency because, with the same number of parameters as Incep-

tion, Xception signi�cantly outperforms Inception V3 on a larger image classi�cation

dataset comprising 350 million images and 17,000 classes. The details of the Xcep-
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Table 4.1: Details of collected ingredient-annotated food images for multi-task CNN

Category
Number of Calorie (kcal) Salinity (g)
images Ave. S.D. Ave. S.D.

Curry and rice 214 531.14 220.57 2.630 1.045
Fried rice 217 469.83 165.32 2.310 0.995
Chow mein 140 552.62 118.86 3.202 0.921
Spaghetti 565 573.50 116.98 2.656 0.868
Gratin 264 397.99 160.43 1.985 0.836

Miso soup 373 84.65 52.20 1.946 0.643
Stew 136 379.53 119.70 2.331 0.914

Beef and potato stew 154 378.24 126.35 2.357 1.026
Hamburg steak 226 395.57 108.60 2.254 0.823

Cold tofu 114 141.56 57.30 1.235 0.594
Scattered sushi 107 534.91 129.93 2.961 1.122

Omurice 105 683.63 132.44 2.917 0.776
Potato salad 210 230.40 93.49 1.205 0.583
Mixed rice 226 409.65 97.20 1.814 0.751

Whole 3,051 416.65 211.90 2.280 0.999

tion architecture has been shown in Figure 3.11 of section 3.3.3. Figure 4.9 shows

the global average-pooling layer, the optional fully connected layer, and the logistic

regression at exit �ow are excluded from the original Xception architecture. This

architecture's layers are used as the common layers for all tasks.

A multi-task learning mechanism makes it possible to transfer shared knowl-

edge across multiple prediction tasks so that only task-speci�c features need to be

learned [168, 169] and utilize valuable information conceived in several related tasks

to increase the ability to generalize all tasks [170]. The CNN model learns each pre-

diction task simultaneously through the shared representation [171]. The two most

commonly used approaches to performing multi-task learning in deep neural networks

are hard parameter sharing, which applied by sharing the hidden layers between all

tasks while keeping several task-speci�c output layers, and soft parameter sharing,

where each task has its model with its own parameters [172]. Figure 4.10 represent

hard parameter sharing and soft parameter sharing.
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Figure 4.7: Distribution of calorie content throughout the dataset

Table 4.2: Details of collected category-annotated food images for two-stage �ne-
tuning

Category
Number of

Category
Number of

images images

Curry and rice 2,787 Fried rice 2,999
Chow mein 2,883 Spaghetti 3,000
Gratin 2,095 Miso soup 3,000
Stew 1,619 Beef and potato stew 736

Hamburg steak 2,500 Cold tofu 536
Scattered sushi 612 Omurice 908
Potato salad 1,684 Mixed rice 3,000

The network of Xception model in this research branches to each task from the

global average-pooling layer. Each task has a global average pooling layer, a fully

connected layer with a dropout, and an output layer, respectively. The branched

networks are adjusted by specializing in di�erent tasks, namely the classi�cation and

regression tasks. The food classi�cation task has a fully connected layer with 512

dimensions and an output layer corresponding to each food category. The calorie and

salinity estimation task comprises a fully connected layer with 512 dimensions and an

output layer composed of one unit, respectively.
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Figure 4.8: Distribution of salinity content across the dataset

The proposed multi-task CNN is trained based on the following loss function L.

L =
1

N

N∑
i=0

(
wcatL

i
cat + wcalL

i
cal + wsalL

i
sal

)
, (4.1)

where Lcat, Lcal, and Lsal are the loss functions of the food classi�cation, food calorie

estimation, and salinity estimation tasks, respectively. Further, wα(α = {cat, cal, sal})

are the weight coe�cients for each loss function, so as to balance the value scales of

the three loss function. N is the number of image samples.

A soft-max function is used for the output layer of the food classi�cation task,

since this task is a multi-class classi�cation problem. Lcat is de�ned based on the

standard soft-max cross-entropy.

Lcat = −
M∑
i=0

ti log yi, (4.2)

where ti represents the ground-truth of the ith unit, which is binary, yi is the output

of the ith unit, and M is the number of food categories.

The food calorie task and salinity estimation task are treated as regression prob-
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Figure 4.9: Xception architecture in multi-task CNN

lem. Although the mean square error is generally used as the loss function in a

regression problem, the loss function proposed by Ege and Yanai [159] is used in the

proposed method.

Lcal = wcal,reEcal,re + wcal,abEcal,ab, (4.3)

Lsal = wsal,reEsal,re + wsal,abEsal,ab, (4.4)

where each w is the weight coe�cient so as to balance the value scales of these errors.

Each of the errors is de�ned by

Ecal,ab = |ycal − gcal|, (4.5)

Ecal,re = |ycal − gcal|/gcal, (4.6)

Esal,ab = |ysal − gsal|, (4.7)

Esal,re = |ysal − gsal|/gsal, (4.8)
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Hard parameter sharing

Soft parameter sharing

Figure 4.10: Hard parameter sharing and soft parameter sharing structures on multi-
task learning [172]

where y and g of each error are the estimated value and the ground truth, respectively.

The relative error E(?,re) is the ratio of the absolute error to the ground truth. The

absolute error E(?,ab) is the absolute value of the di�erence between the estimated

value and the ground-truth.

4.3.3 Two-stage Fine-tuning

When applied to areas where large-scale data are much more di�cult to gather, CNN

has still proven e�ective through the use of transfer learning [173]. Pre-trained CNNs

are used as weight initializers for �ne-tuning to the new target task. In general,

the ImageNet dataset, which contains 50,000,000 images with 1,000 categories, is
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Figure 4.11: Two-stage �ne-tuning using Xception on collected food images dataset

used for pre-training the CNN to solve various tasks. ImageNet is not necessarily

strongly related to the food ingredient estimation task in this study, because it is a

dataset for generic object recognition. When �ne-tuning a multi-task CNN for food

category classi�cation and food ingredient estimation using the pre-trained model

with ImageNet, the previous study reports clearly that the accuracy improvement is

slight if the number of image per class is not large.

The proposed method address this issue by focusing on two-stage �ne-tuning.

First, a category-annotated food image dataset is prepared. The number of images

in this dataset is larger than the dataset consisting of collected images with both

ingredients annotated for the main task, however it is smaller than ImageNet. Sub-

sequently, CNN pre-trained by ImageNet is once more �ne-tuned for food category

classi�cation by using only the category-annotated food image dataset that consists

of 28,359 images. Finally, the multi-task CNN model is �ne-tuned again for food

category classi�cation and food ingredient estimation using the main task dataset,

an ingredient-annotated dataset that contains 3,051 images, as the second stage of

the �ne-tuning process. Figure 4.11 explains the two-stage �ne-tuning process on

Xception utilizing the provided dataset.
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4.4 Experimental Setup and Results of Food Con-

stituent Estimation

4.4.1 Experimental Setup

In this study, two food image datasets, an ingredient-annotated dataset and a category-

only-annotated dataset for two-stage �ne-tuning, are constructed. In the ingredient-

annotated dataset, 90% of the images in each category were used for training the

CNN, and the remaining images were used for testing. In the category-only-annotated

dataset, 80% of the images in each category was utilized to train the CNN, and the

remainder was used for testing.

The performance of the proposed multi-task CNN with two-stage �ne-tuning are

evaluated. I demonstrated the e�ectiveness of multi-task learning and two-stage �ne-

tuning, respectively, by comparing three methods: single-task CNN, multi-task CNN

without two-stage �ne-tuning, and multi-task CNN with two-stage �ne-tuning. The

ImageNet dataset �ne-tunes all models. The original Xception architecture is used for

the single-task CNN. Single-task CNN is optimized for every task: food image classi�-

cation, calorie estimation, and salinity estimation, each using the ingredient-annotated

dataset. Multi-task CNN is implemented by utilizing Xception architecture as well

with branching after the feature extraction layer so that the classi�cation process can

be carried out simultaneously with the estimation process. The experiment was done

by applying the ingredient-annotated dataset. While on the multi-task CNN with

two-stage �ne-tuning, a category-annotated dataset is also used for �ne-tuning before

the main task was accomplished by using ingredient-annotated dataset. Table 4.3

shows the details set up for three task experiments on each model.

The initial learning rate is set to 0.001 and gradually decreases to 0.0001. All of

the models were trained by Adagrad in 100 epochs. The dropout rate for each task

is set to 0.5. The batch size is set to 16. I experimentally set the weight for each loss
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Table 4.3: Detailed setup for the experiments of the tasks

Model Task

Dataset Xception
Only Category and Without With

Category- Ingredient- branches branches
annotated annotated (Single-task) (Multi-task)

Single-task Category
- X X -

class.
Calorie est. - X X -
Salinity est. - X X -

Multi-task
All - X - X

CNN
Multi-task 2nd Fine

X - - X
CNN with 2 tuning
stage of �ne

All - X - X
tuning

function to wcat = 1.0, wcal = 0.4, wsal = 0.9, respectively. I also set the weight for

each loss function of each task to wcal,re = 1.0, wcal,ab = 0.3, wsal,re = 1.0, wsal,ab = 0.5,

respectively.

The classi�cation accuracy was used as the criterion for evaluating the food image

classi�cation. The absolute error Eab, relative error Ere, and correlation coe�cients

were also used as criteria for calorie and salinity estimation.

4.4.2 Results and Discussions

a. Category classi�cation result

The results of the three tasks from all methods can be seen in Table 4.4. On the

category classi�cation result as the �rst task, the accuracy of the proposed multi-task

CNN is higher than the single-task CNN and the accuracy of the multi-task CNN

with two-stage �ne-tuning is the highest. Figure 4.12 presented the confusion matrix

for single-task and multi-task. The label numbers correspond to each category. Some

misclassi�cations were shown on the single-task CNN, however they were reduced

in multi-task CNN with and without two-stage �ne-tuning. These misclassi�cations
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Table 4.4: Comparison of results of each task

Calorie Salinity Category
Methods Eab Ere CC

Eab Ere CC
Accuracy

(kcal) (%) (g) (%) (%)

Single-task CNN 100.2 41.7 0.80 0.75 37.2 0.40 90.0
Multi-task CNN 94.6 36.6 0.82 0.76 36.8 0.43 91.0
Multi-task CNN with

89.6 31.2 0.84 0.74 36.1 0.45 92.6
two-stage �ne-tuning

occurred between two categories in single-task: `Fried rice' and `Mixed rice', `Chow

mein' and `Spaghetti'. These food categories mostly contain the same basic ingredient:

rice and noodles, making them di�cult to be distinguished and causing misclassi�ca-

tion. However, misclassi�cation between `Fried rice' and `Mixed rice' is improved in

multi-task CNN with and without two-stage �ne-tuning.

b. Ingredient estimation

The result of the ingredient estimation as the next task showed a signi�cant im-

provement of calorie estimation on the multi-task CNN with two-stage �ne�tuning

over the single-task CNN. In contrast, the salinity estimation with the multi-task

CNN with two-stage �ne-tuning relative to the single-task CNN showed slight im-

provement. Table 4.1 shows that the ratio of intra-class variance to the interclass

variance of the salt content is larger than that of the calories. Seemingly, the task of

estimating the salinity is more di�cult compared to that of estimating the calories.

Even in such a situation, both the errors and correlation coe�cient of the salinity

estimation were improved in these methods. I demonstrated that the proposed multi-

task CNN with two-stage �ne-tuning has correctly classi�ed the food category and

estimated the calories and salinity. From these results, I con�rmed that the multi-

task CNN is superior to the single-task CNN, and the multi-task CNN with two-stage

�ne-tuning outperforms the multi-task CNN without two-stage �ne-tuning.

The multi-task CNN is advantageous to e�ectively and e�ciently learn the com-
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(a) Single-task

(b) Multi-task

Figure 4.12: Confusion matrix from single-task and multi-task on food category clas-
si�cation

mon features that contribute to each task if tasks are strongly correlated. In addition,

the CNN is �ne-tuned to enable the extraction of useful features for nutrient estima-

tion in two-stage �ne-tuning using a large number of images for category classi�cation.

Therefore, the di�erence in improvement between calorie and salinity estimation is
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assumed to be attributable to the correlation di�erence between the food category clas-

si�cation task and the estimation of each ingredient. As a result, it is assumed that

the correlation between category classi�cation and salinity estimation to be weaker

than calorie estimation, from the point of view of an image feature.

The relations between the results of category classi�cation and nutrient estimation

are analyzed from the experimental results. I initially categorized the result of calorie

and salinity quantity estimation into success and failure cases. The successful cases

of calorie and salinity quantity estimation as shown in Figure 4.13 and Figure 4.14,

indicates that the category classi�cation was completed and the di�erence (error)

between the estimation result and the ground-truth of calorie or salinity quantity

is relatively small. Meanwhile, the failure case is the state where the obtained error

value is relatively large except the misclassi�cation. In this failure case, the signi�cant

error is in�uenced by the result of the incorrect category classi�cation result and also

caused by the ground-truth calorie/salinity quantity, which is too large. In particular

for salinity estimation, the large error acquired due to the in�uence of the ground-

truth value is greater than the obtained error on calorie estimation. This is likely due

to the ground truth value being too far from the mean data. Furthermore, there are

the di�culties to estimate the salinity quantity on `Omurice'. The di�culties arose

since the various appearances in serving the food makes the `Omurice' di�cult to

classify, which will a�ect the estimation result.

Detailed results of the calorie and salinity estimation for each category are listed

in Table 4.5 and 4.6. In the calorie estimation, the error in categories with a large

mean and large intra-class variance is large. In contrast, it was di�cult to �nd some

correlation in the salinity estimation results. However, I con�rmed the e�ectiveness of

the proposed method since each absolute estimated error is smaller than the standard

deviation in each category.
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Figure 4.13: Successful and failed cases of calorie estimation results

Figure 4.14: Successful and failed cases of salinity estimation results

4.5 Conclusions

In this study, a method to estimate food ingredients from a food image by multi-

task CNN was proposed. As a benchmark dataset for evaluation of the proposed

method, the new food image dataset was constructed by using publicly available

images from several recipe-gathering websites. The two-stage transfer learning using

a large number of category-annotated food image database was proposed to improve

the estimation accuracy, because it is di�cult to collect a large number of food images

where the calorie content and salinity are known. I demonstrated the e�ectiveness

of multi-task learning with food category classi�cation to estimate the calorie and
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Table 4.5: Comparison of calories estimation on each class

Single-task Multi-task Multi-task w/ 2-F.T.
Category Eab Ere Eab Ere Eab Ere

(kcal) (%) (kcal) (%) (kcal) (%)

Curry and rice 113.8 20.1 103.3 17.6 95.6 17.3
Fried rice 73.8 13.1 81.9 15.2 80.1 14.3
Chow mein 76.6 12.7 81.8 13.9 68.2 11.4
Spaghetti 98.7 16.2 97.2 16.0 86.3 14.0
Gratin 132.6 60.0 110.9 51.1 123.7 54.1

Miso soup 37.5 104.9 31.3 81.2 24.8 55.6
Stew 140.0 47.8 134.6 41.0 126.0 33.1

Beef and potato stew 94.8 32.0 79.5 28.6 104.8 33.6
Hamburg steak 101.8 31.6 117.3 34.6 81.6 24.5

Cold tofu 67.7 62.4 61.5 56.3 68.3 52.6
Scattered sushi 152.4 23.6 139.8 21.4 112.4 16.6

Omurice 172.4 25.5 119.3 20.3 179.1 27.5
Potato salad 128.0 84.7 112.6 73.0 92.1 60.4
Mixed rice 109.5 22.6 113.1 23.7 121.0 24.4

salinity content by showing the better performance compared with the single-task

result. The existence of a relationship between the food category and salinity was

experimentally con�rmed.
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Table 4.6: Comparison of salinity estimation on each class

Single-task Multi-task Multi-task w/ 2-F.T.
Category Eab Ere Eab Ere Eab Ere

(g) (%) (g) (%) (g) (%)

Curry and rice 0.64 28.5 0.51 24.5 0.40 18.5
Fried rice 0.91 51.9 1.10 64.9 1.04 56.8
Chow mein 0.86 22.8 0.75 21.1 0.94 28.2
Spaghetti 0.77 32.5 0.80 34.6 0.74 31.0
Gratin 0.70 43.7 0.61 32.2 0.60 33.2

Miso soup 0.54 35.7 0.50 34.8 0.57 38.1
Stew 0.71 31.5 0.78 38.7 0.81 36.8

Beef and potato stew 0.92 59.4 1.26 67.9 1.03 62.7
Hamburg steak 0.74 37.0 0.86 39.4 0.88 41.2

Cold tofu 0.66 57.5 0.66 49.5 0.52 40.6
Scattered sushi 1.42 33.5 1.15 25.0 1.30 28.8

Omurice 0.87 25.4 0.72 26.4 0.77 26.9
Potato salad 0.45 40.3 0.33 26.1 0.50 42.5
Mixed rice 0.90 32.7 1.03 39.6 0.80 30.1



Chapter 5

Conclusions

In this dissertation, I studied the implementation of deep learning for the development

of welfare technology in two areas; hand posture classi�cation and food constituent

estimation. Both showed the importance of a large amount of data in presenting

CNN performance with implemented deep learning method. I demonstrated the deep

learning in both areas and presented the steps taken to solve this problem. I discuss

deep learning in Chapter 2 of this dissertation, as the references method in particular

CNN. CNN is the primary method used in the classi�cation process and even in the

feature extraction. Besides, I added an explanation regarding approaches to improve

the performance of CNN, such as preprocessing (including data augmentation) and

transfer learning.

In Chapter 3, an e�ective hand posture classi�cation method by employing a

progressive data augmentation method and utilizing the state-of-the-art CNN archi-

tecture was proposed. I suggested a data augmentation method based on 3D rotation

on hand depth data to generate more new hand image data. This proposed idea suc-

cessfully generated more new hand depth image data, which would otherwise require

considerable e�ort to collect manually, and these data have enhanced CNN perfor-

mance. Furthermore, Xception model as state-of-the-art CNN architecture for feature

extraction and classi�cation was applied. I demonstrated that our study produced

83
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a better performance (3.9%) compared with previous research. The availability of

a large hand image data and the e�ective hand posture classi�cation technique can

facilitate the development of a sign language recognition system.

In Chapter 4, a food constituent estimation method by multi-task CNN was pro-

posed. In this research, two food image datasets, ingredients-annotated (including

calories and salinity) dataset and category-annotated dataset, were constructed. An

ingredient-annotated dataset is used for multi-task CNN, and the category-annotated

dataset is applied for the proposed two-stage transfer learning. Transfer learning us-

ing a large number of category-annotated food image database is used to improve the

estimation accuracy, because the collection of a large number of food images whose

calorie content and salinity are known is di�cult. As a result, our multi-task learning

with food category classi�cation to estimate the calorie and salinity content showed

better performance compared with the single-task result. I experimentally con�rmed

the existence of a relationship between the food category and salinity. The availability

method for salinity estimation can improve the food recognition system performance

as an appliance for helping disease prevention.

Overall, the application of deep learning in this research makes the development

of image-based welfare technology more straightforward, especially for the establish-

ment of sign language recognition system and food constituent estimation system for

lifestyle disease prevention. This research contributed by presenting the classi�cation

method using CNN and o�ered a way to improve its performance.

Given that the research I presented focused on the e�ectiveness of classi�cation

and estimation methods, assuredly this study still requires another supported way for

developing a whole welfare technology system. Notably, in hand posture classi�cation

research, sign postures (alpha signs) that require �nger motion were not included.

Considering RNN for this problem, opens opportunities for deep learning to increase

the recognition ability for sign posture involving �nger/arm motion. Moreover, the

use of color images together with depth images as the dataset is expected to expand
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the range of the method performance. In food constituent estimation research, I only

estimated the food image served for one person. Therefore, the estimation of the

calorie and salinity from the food image serving for multiple people is necessary to

be considered, along with quantity estimation. On the other hand, the robustness

of the food images to the light conditions also need to be considered in the dataset

construction.
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